首页|基于小波变换和贝叶斯证据推断框架下的LS—SVM短期风速预测

基于小波变换和贝叶斯证据推断框架下的LS—SVM短期风速预测

扫码查看
基于小波的多分辨率分析,针对风速序列拟周期性、非平稳性及非线性等特点,将风速序列按不同频率进行分解,对分解后的原始风速信号分别建立不同的预测模型;各个模型的最佳参数由贝叶斯证据3层推断得出,用以建立基于小波和贝叶斯证据推断框架下的最小二乘支持向量机(LS-SVM)回归短期风速预测模型。应用该模型对东北某风电场的风速进行了提前1h的预测,预测的平均绝对百分比误差为7.63%,提高了预测精度。预测结果表明:基于贝叶斯证据推断框架下的LS—SVM和小波分析相结合的短期风速预测模型是一种有效、可行的风速预测模型,可为风力发电功率的预测提供一定的理论支持。
LS-SVM Short-Term Wind Speed Forecasting Based on Wavelet Decomposition Within the Bayesian Evidence Inference Framework
In view of the quasi-periodic, non-stationary and non-linear features of wind speed, the original wind speed sequence is decomposed into a series of sub-sequences based on the multiresolution analysis feature of wavelet. For each of these sub-sequences, a different tbrecasting model is established. The optimal parameters of every model can be found through the three-layer Bayesian evidence inference and they are used to establish the least squares support vector machine (LS-SVM) short-term wind speed forecasting model based on the wavelet decomposition and the Bayesian evidence inference framework, When the proposed method was applied in the one-hour-ahead wind speed prediction in a wind farm in the northeast region, the mean average percentage error of the predicted wind speed was only 7.63%, a large improvement of the prediction precision. The results verify the effectiveness of the proposed method.

Bayesian evidence inference frameworkleast squares support vector machine (LS-SVM)wind speed forecastingwavelet decomposition (WD)

张洁、方瑞明

展开 >

华侨大学信息科学与工程学院,福建厦门361021

贝叶斯证据推断框架 最小二乘支持向量机 风速预测 小波分解

福建省高等学校新世纪优秀人才支持计划项目

闽教科2010-24

2012

能源技术经济
国网能源研究院,湖南省电力公司,中国电力财务有限公司

能源技术经济

ISSN:1674-8441
年,卷(期):2012.24(5)
  • 18