首页|基于混沌自适应遗传ν-SVR的城市客运量预测

基于混沌自适应遗传ν-SVR的城市客运量预测

扫码查看
针对城市客运量预测问题本身所存在的小样本、高维数和非线性等特点,将ν-支持向量回归机(ν-support vector regression,ν-SVR)应用于城市客运量预测.为了提高ν-SVR模型的预测精度和泛化性能,利用基于混沌理论和自适应机制的混沌自适应遗传算法(chaosadaptive genetic algorithm,CAGA)优选ν-SVR模型参数,建立了基于CAGA进行参数优选的CAGA-ν-SVR城市客运量预测模型.结合1978~2008年统计数据进行了仿真预测,结果表明该模型的预测性能优于RBF神经网络模型、GA-SVR模型和GA-ν-SVR模型,平均绝对相对误差控制在2.3%以内,可有效应用于城市客运量预测.
Prediction of passenger traffic volume using ν-support vector regression optimized by chaos adaptive genetic algorithm
Aiming at the prediction of passenger traffic volume with small samples,multi-dimension and nonlinearity,ν-support vector regression(ν-SVR) is introduced to forecast passenger traffic volume.To seek the optimal forecast accuracy and generalization performance of ν-SVR,chaos adaptive genetic algorithm(CAGA) is used to optimize the parameter,which is based on chaos mapping and adaptive mechanism.Then,a new passenger traffic volume forecasting model of ν-SVR named by CAGA-ν-SVR is proposed.The model is applied to forecasting passenger traffic volume with data of 1978-2008.Compared with RBF neural network model,GA-SVR model and GA-ν-SVR model,it is concluded that CAGA-ν-SVR prediction model has higher prediction precision,and can effectively predict passenger traffic volume with less than 2.3% of mean absolute relative error.

ν-support vector regression genetic algorithm chaos mapping adaptive mechanism passenger traffic volume prediction

康海贵、李明伟、周鹏飞、赵泽辉

展开 >

大连理工大学建设工程学部,辽宁大连116024

ν-支持向量回归机 遗传算法 混沌映射 自适应机制 客运量预测

高等学校博士学科点专项研究基金河南省交通厅科技计划资助项目

200801411105200912

2012

大连理工大学学报
大连理工大学

大连理工大学学报

CSTPCDCSCD北大核心EI
影响因子:0.531
ISSN:1000-8608
年,卷(期):2012.52(2)
  • 5
  • 2