首页|基于IABC-GA的管路协同机舱设备布局优化方法研究

基于IABC-GA的管路协同机舱设备布局优化方法研究

扫码查看
为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径寻优的改进算法,结合协同进化思想,将船舶机舱整体布局优化问题拆解为互相关联的设备布局问题和管路布局问题,两者在相互影响的情况下协同进化,最终得到最佳的船舶机舱布局设计方案.通过对实船机舱的仿真实验,验证了管路协同设备布局优化方法的可行性与可靠性.设备布局方面,与原始设备布局相比效果提升59.5%;船舶机舱整体布局方面,与先进行设备布局优化再进行管路布局优化相比效果提升11.8%.
Research on optimization method of pipeline collaborative engine room equipment layout based on IABC-GA
A layout optimization design method for pipeline collaborative equipment based on improved artificial bee colony genetic algorithm(IABC-GA)is proposed to address the overall layout optimization design problem of ship engine rooms,in order to obtain the best equipment layout scheme and pipeline layout scheme.On the basis of artificial bee colony algorithm and genetic algorithm,an improved algorithm is proposed which is suitable for both equipment layout optimization and pipeline path optimization.Combined with the concept of coevolution,the overall layout optimization problem of ship engine room is decomposed into interrelated equipment layout problems and pipeline layout problems.The two evolve synergistically under mutual influence,ultimately obtaining the best ship engine room layout design scheme.The feasibility and reliability of the pipeline collaborative equipment layout optimization method are verified through simulation experiments on the actual ship engine room.In terms of equipment layout,the effect is improved by 59.5%compared to the original equipment layout.And in terms of the overall ship engine room layout,the effect is improved by 11.8%compared to firstly optimizing the equipment layout and then optimizing the pipeline layout.

improved artificial bee colony genetic algorithm(IABC-GA)ship engine roomequipment layout optimizationcoevolution

王文双、杨远松、刘海洋、杨明君、林焰

展开 >

大连理工大学 船舶CAD工程中心,辽宁 大连 116024

中核绿色建造技术与装备重点实验室,北京 101300

中国核工业二三建设有限公司,北京 101300

改进人工蜂群遗传算法(IABC-GA) 船舶机舱 设备布局优化 协同进化

2025

大连理工大学学报
大连理工大学

大连理工大学学报

北大核心
影响因子:0.531
ISSN:1000-8608
年,卷(期):2025.65(1)