首页|基于格拉姆角场和PCNN-GRU的换相失败诊断方法

基于格拉姆角场和PCNN-GRU的换相失败诊断方法

扫码查看
高压直流输电作为一种高效的电力传输技术,其运行中的换相失败会导致直流电流迅速增加、直流电压急剧下降,对电网的安全稳定运行造成重大影响.针对换相失败,提出一种结合格拉姆角场(Gramian angular field,GAF)与并行卷积神经网络–门控循环单元(Parallel convolutional neural network-gated recurrent unit,PCNN-GRU)的换相失败诊断方法.利用GAF将一维时间序列信号转换为二维图像特征图,保留信号的时序信息.再利用PCNN-GRU模型的卷积神经网络的特征提取能力和门控循环单元的时序特征处理能力,使模型学习更多的故障特征,提高模型的诊断性能.以永富直流输电系统为对象,实验结果表明该方法诊断精度为 99.33%,有较强的多特征提取能力和时序特性分析能力,诊断性能强,响应及识别换相失败快速.
Diagnosis Method for Commutation Failure Based on Gramian Angular Field and PCNN-GRU
High voltage direct current transmission as an efficient power transmission technology,the commutation failure in its operation will lead to a rapid increase in DC current and a sharp drop in DC voltage,which have a significant impact on the safe and stable operation of the power grid.For commutation failure,a diagnosis method for commutation failure which combined Gramian angular field(GAF)with parallel convolutional neural network-gated recurrent unit(PCNN-GRU)is proposed.The one-dimensional time series signal is converted into two-dimensional image feature map using GAF,which preserves the time series information of the signal.The feature extraction capability of convolutional neural network and the time series feature processing capability of gated recurrent unit of PCNN-GRU model are then used to enable the model to learn more fault features and improve the diagnostic performance of the model.The experiment on Yongfu DC transmission system shows that the diagnostic accuracy of this method is 99.33%,with strong multi-feature extraction ability and time series feature analysis ability,and the diagnostic performance is strong,which can quickly respond to and identify commutation failure.

high voltage direct current transmissioncommutation failureGramian angular fieldPCNN-GRUfault diagnosisdeep learning

陈仕龙、俸春雨、牛元有、彭程、毕贵红、赵四洪

展开 >

昆明理工大学 电力工程学院,云南 昆明 650500

云南电网有限责任公司 曲靖供电局,云南 曲靖 655000

高压直流输电 换相失败 格拉姆角场 PCNN-GRU 故障诊断 深度学习

2025

电力科学与工程
华北电力大学

电力科学与工程

影响因子:0.675
ISSN:1672-0792
年,卷(期):2025.41(1)