首页|计及相似日和时间相关性的深度学习短期电力负荷预测

计及相似日和时间相关性的深度学习短期电力负荷预测

扫码查看
针对特征提取不足、负荷数据噪声大等问题,提出一种基于多因素相似日聚类、时间相关性分析、两层分解降噪的多分支组合负荷预测方法.首先,利用皮尔逊相关系数和最大互信息系数综合分析日负荷影响因素的线性相关性和非线性相关性,增强对重要特征的筛选.将筛选出的高相关性气象因素、日期因素和 24 h日负荷数据通过主成分分析方法降维后,进行K-medoids相似日聚类.然后,对各聚类相似日的负荷、气象和日期等数据进行多维分析、多特征提取,构建多特征提取矩阵块以增强数据的周期性规律和时空特性,并结合变分模态分解及经验小波变换提取原始数据的多尺度波动规律、增加数据细节特征,同时降低数据的非线性程度.利用组合预测模型中不同输入分支的门控残差卷积模块充分挖掘数据间的局部相关性,提取局部短时依赖、获取高维特征;利用输入分支并联的双向长短期记忆网络提取数据间的时序特征、挖掘长期依赖关系.最后,对不同类型的特征进行综合集成、强化,实现短期电力负荷预测.实验结果表明:在短期电力负荷单步预测中,用所提的多特征提取、多模型组合方法可获得较高的预测精度;在多步预测中,用所提策略能大幅提升预测精度.所提方法整体预测效果优异.
Short-term Power Load Forecasting of Deep Learning Based on Similar Daily Clustering and Time Correlation
To address the problems of insufficient feature extraction and high noise of load data,a multi-branch combined power load forcasting method based on multi-factor similar daily clustering,time correlation analysis and two-layer decomposition for noise reduction is proposed.Firstly,pearson correlation coefficient(PCC)and maximum information coefficient(MIC)methods are used to comprehensively analyze the linear and nonlinear correlations of daily load influencing factors,and to enhance the selecting of important features.The selected high correlation meteorological factors,date factors and 24-hour daily load data are dimensionally reduced by principal component analysis(PCA)method,and then subjected to K-medoids similar daily clustering.Secondly,multi-dimensional analysis and multi-feature extraction are carried out on the load,weather and date datas of similar days in each cluster,and multi-feature extraction matrix blocks are constructed to enhance the periodic rule and spatio-temporal characteristics of the data.Combining variational mode decomposition(VMD)and empirical wavelet transform(EWT)algorithms to extract the multi-scale fluctuations rule of the original data,increase the details of the data,and reduce the nonlinear degree of the data at the same time.The residual gated convolution module of different input branches in the combined forecasting model is used to fully explore the local correlation of the data,extract the local short-term dependence,and obtain high-dimensional features.The bidirectional long short-term memory(BiLSTM)network with parallel input branches is used to extract the time series features of the data and explore the long-term dependency relationship.Finally,different types of features are integrated and strengthened comprehensively to achieve short-term power load forecasting.The experimental results show that the proposed method of multi-feature extraction and multi-model combination can obtain higher forecasting accuracy in short-term power load single-step forecasting.In multi-step forecasting,the forecasting method can greatly improve the forecasting accuracy.The proposed method has excellent overall forecasting performance.

power load forecastingsimilar daily clusteringtime correlation analysisgated convolutional networkself-attention mechanism

李林艳、毕贵红、孔凡文、李志强、李国辉

展开 >

昆明理工大学 电力工程学院,云南 昆明 650500

昆明地铁运营有限公司,云南 昆明 650032

电力负荷预测 相似日聚类 时间相关性分析 门控卷积网络 自注意力机制

2025

电力科学与工程
华北电力大学

电力科学与工程

影响因子:0.675
ISSN:1672-0792
年,卷(期):2025.41(1)