首页|机场场面交通流量预测方法研究

机场场面交通流量预测方法研究

Research on Prediction Method of Airport Surface Traffic Flow

扫码查看
针对机场场面交通可获数据的局限性,为精准提取机场交通数据时空特征及预测场面交通流量.首先,基于推出控制理论,建立机场场面运行数值仿真模型,得到因数据局限无法获取的预测指标;其次,搭建卷积神经网络(CNN)与长短期记忆网络(LSTM)组合预测模型提取时空特征;最后,以河南郑州机场为例进行试验验证,比较模型在不同训练数据量下的预测性能与误差指标,结果表明基于仿真指标的预测模型预测结果精确度高且性能稳定.
Under the limitation of the available data of airport surface traffic,it was of great significance for civil aviation transportation system to accurately extract the spatial and temporal characteristics of airport traffic data and predict the surface traffic flow.Firstly,based on the pushback control theory,a numerical simulation model of airport surface operation was established to obtain predictive indicators that couldn't be obtained due to data limitations.Secondly,a combined prediction model of convolutional neural network(CNN)and long short-term memory network(LSTM)was built to extract spatio-temporal features.Finally,taking Henan Zhengzhou Airport as an example,the prediction performance and error index of the model under different training data were compared.The results showed that the prediction model based on simulation index had high accuracy and stable performance.

traffic flow predictionairport scene traffic simulationpushback controlconvolutional neural networklong short-term memory network

廉冠、于嘉欣、张晓玥、郭雪松

展开 >

桂林电子科技大学广西智慧交通重点实验室,广西桂林 541010

桂林电子科技大学南宁研究院,广西南宁 530000

桂林电子科技大学建筑与交通工程学院,广西桂林 541010

交通流量预测 机场场面交通仿真 推出控制 卷积神经网络 长短期记忆网络

广西科技基地和人才专项广西自然科学基金青年基金国家自然科学基金

桂科AD192450212020JJB17004961963011

2024

大连交通大学学报
大连交通大学

大连交通大学学报

CSTPCD
影响因子:0.258
ISSN:1673-9590
年,卷(期):2024.45(1)
  • 12