首页|中国东部季风区山地落叶阔叶林上线分布特征及其地理解释

中国东部季风区山地落叶阔叶林上线分布特征及其地理解释

Distribution characteristics and geographical interpretation of the upper limit of montane deciduous broad-leaved forests in the eastern monsoon region of China

扫码查看
落叶阔叶林是中国东部季风区的典型植被.本文利用复合高程信息的地表覆盖精细分类产品数据,提取山地落叶阔叶林上线.构建山地落叶阔叶林上线分布高度云模型及其影响因子云模型,探讨山地落叶阔叶林上线及其影响因子的分布特征;构建多尺度多元线性回归模型以及影响因子权系数云模型,比较分析影响因子对落叶阔叶林上线作用的尺度变化和空间分异,尝试探讨各山地落叶阔叶林上线对气候因子作用的敏感性差异.结果如下:①中国东部季风区山地落叶阔叶林上线高度自北向南先升高后降低,分布高度的期望、熵和超熵分别为965.77~1993.52 m、1 32.80~514.09 m和27.58~205.34 m.②山地落叶阔叶林上线的影响因子存在显著的尺度变化和空间分异:区域尺度上,非气候林线和气候林线的主导因子均为山体基面高度,贡献率分别为71.36%和44.06%,气候林线受温度影响高于降水,而非气候林线受降水影响高于温度;山系尺度上,山地落叶阔叶林上线主要受1月均温和年降水量影响,且大部分山地1月均温的作用高于年降水量;局地尺度上,除大别山外,山顶效应对各山地落叶阔叶林上线作用权重的期望最大,年降水量作用权重的期望均高于1月均温.③大别山和太行山落叶阔叶林上线对年降水量最敏感,吕梁山落叶阔叶林上线对 1月均温最敏感.探讨山地落叶阔叶林上线的分布特征及其影响因素的空间分异,可以推动垂直带对气候变化响应差异的研究,并为区域生态安全监测体系的部署和管理提供理论支持.
The deciduous broad-leaved forests are a typical vegetation in the eastern monsoon region of China.This work utilizes the fine classification data of surface cover of composite elevation information to extract the upper limit of montane deciduous broad-leaved forests.We examine the distribution characteristics of the upper limit and its factors influencing the montane deciduous broad-leaved forests by constructing cloud models of the upper limit height.Moreover,this work constructs multiple linear regression models(with the upper limit of deciduous broad-leaved forests at multiple scales(regional,mountain,and local)as the dependent variable and the influencing factors as the independent variables),and a weight coefficient cloud model of influencing factors.Furthermore,this work compares and analyzes the scale changes and spatial differences of the effect of influencing factors on the upper limit of deciduous broad-leaved forests.The sensitivity differences of different montane deciduous broad-leaved forest upper limits to climate factors are also explored.Results show that:(1)The upper limit height of the deciduous broad-leaved forest in the eastern monsoon region of China first increases and then decreases from north to south.The expectation(Ex),entropy(En),and hyper entropy(He)of the distribution height cloud model are 965.77-1993.52 m,132.80-514.09 m,and 27.58-205.34 m,respectively.(2)Significant scale changes can be observed in the impact mechanism of the upper limit of deciduous broad-leaved forests in the mountainous areas:at the regional scale,the dominant factor for non-climatic and climatic forest lines is mountain base elevation,with contribution rates of 71.36%and 44.06%,respectively.The climatic forest line is more affected by temperature than by precipitation.Meanwhile,non-climatic forest line is more affected by precipitation than by temperature.At the mountain scale,the upper limit of deciduous broad-leaved forests in the mountainous areas is mainly influenced by January average temperature and annual precipitation,and the role of January average temperature in most mountainous areas is larger than that of annual precipitation.On a local scale,except for the Dabie Mountains,the mountaintop effect has the highest weight on the upper limit of deciduous broad-leaved forests in each mountainous area(Ex:44.84%-68.15%).In addition,the expectation weight of annual precipitation(Ex:15.45%-41.86%)is higher than that of the January average temperature(Ex:4.3%-9.97%).(3)The deciduous broad-leaved forests in the Dabie Mountains and Taihang Mountains are most sensitive to annual precipitation(Ex:40.24%and 18.95%;He:0.96%and 1.89%).Lvliang Mountains are the most sensitive to January average temperature(Ex:8.31%;He:1.09%).Exploring the spatial distribution characteristics and influencing factors of the upper limit of deciduous broad-leaved forests in the mountainous areas can promote the study of differences in altitudinal belt response to climate change and provide theoretical support for the construction and management of regional ecological security monitoring systems.

upper limit of montane deciduous broad-leaved forestsinfluencing factorscloud modelspatial variationeastern monsoon region of China

王志勇、韩芳、李传荣、李坤、穆豪祥、王哲

展开 >

山东理工大学建筑工程与空间信息学院,淄博 255049

山东农业大学林学院,泰安 271018

山地落叶阔叶林上线 影响因子 云模型 空间分异 中国东部季风区

国家自然科学基金山东省自然科学基金山东省黄河三角洲生态环境重点实验室开放基金

41401111ZR2021MD0802022KFJJ03

2024

地理学报
中国地理学会 中国科学院地理科学与资源研究所

地理学报

CSTPCDCSSCICHSSCD北大核心
影响因子:3.3
ISSN:0375-5444
年,卷(期):2024.79(1)
  • 65