首页|2000-2019年青藏高原山体效应动态变化及驱动力分析

2000-2019年青藏高原山体效应动态变化及驱动力分析

扫码查看
山体效应(MEE)是隆起地块的热力效应,其引起的水热组合空间分异深刻影响了山地及内部分区的地理生态格局与环境演变.本文基于MOD11C3和气象观测数据构建地—气温回归模型模拟青藏高原气温分布,估算并分析了 2000-2019年高原全域及各地貌分区山体效应时空分异特征及动态演变格局,并借助地理探测器揭示不同时空尺度下研究区山体效应的成因规律.结果表明:①2000-2019年高原全域山体效应均值为4.13 ℃,整体呈现由东北向西南向心圈层增强的空间格局和海拔垂向递减特征,与经、纬度均呈显著负相关;高原地貌分区山体效应多年均值为5.06 ℃,且各地貌分区内部空间分异更加明显和复杂,山体效应得以更精细和规律地刻画.②高原山体效应季节性差异显著,干季山体效应略强于湿季;干季山体效应呈西北弱、东南强的分异格局,而湿季则呈西强东弱特征.③全球气候变化背景下研究区山体效应呈现不对称线性增强规律,其年际倾向率为0.26 ℃/10a,表现出东强西弱、以腹地为核心向边缘递减的"环状"特征,山体效应弱区显著增强,强区变幅较小.干季山体效应波动幅度及变化速率均大于湿季,干季是山体效应变化的主要贡献季节.④高原山体效应时空格局的驱动过程存在一定尺度效应.宏观尺度下山体效应受三维地带性因素主控,其中纬度地带性贡献度达36.37%,奠定了高原山体效应分布的整体基调,而微地形因素及下垫面、气候等差异对山体效应有区域性影响;地貌分区尺度下高原山体效应空间分异仍受纬度控制,但海拔对其贡献更为突出,进而可划为6个地形主导型和3个位置主导型分区;同时NDVI和气压等因子又增强了研究区山体效应的季节尺度空间差异.文本可为深化山地科学规律认知、应对气候变化等方面提供科学参考.
Dynamic evolution and driving force analysis of the mass elevation effect on the Qinghai-Tibet Plateau from 2000 to 2019
The mass elevation effect(MEE)is a thermal phenomenon associated with uplifted landmasses,leading to spatial differentiation in water-heat assemblies that profoundly affect the geo-ecological pattern and environmental evolution of mountains and regions.This study developed a ground-air temperature regression model to simulate the temperature distribution on the Qinghai-Tibet Plateau using MOD11C3 data and meteorological observations,analyzing the spatiotemporal diversity and dynamic evolution of the MEE across the entire plateau and internal landform regions were estimated and analyzed from 2000 to 2019.Employing the Geodetector method,the research uncovered the genesis patterns of the MEE at different scales,revealing an average MEE of 4.13 ℃ with a pronounced centripetal pattern from northeast to southwest and decreasing elevation-dependent characteristics that were significantly negatively correlated with longitude and latitude.The average MEE of the landform regionalization was 5.06 ℃,indicating a stronger internal spatial differentiation within landform regionalization.Seasonally,the MEE was slightly stronger in the dry season,with distinct patterns of weakness in the northwest and strength in the southeast during the dry season,and the opposite in the wet season.The MEE showed an asymmetric linear enhancement pattern under global climate change,with an inclination rate of 0.26 ℃/10 a,presenting a"ring-like"characteristic of strong in the east and weak in the west and decreased from the hinterland core to the edge.The weak areas were significantly enhanced,whereas the strong areas showed small variations.The MEE fluctuation magnitude and change rate were both stronger in the dry season than in the wet season,with the dry season primarily contributing to MEE changes.The spatial and temporal patterns of the MEE were influenced by scale effects,with latitudinal zonation at the macroscale and microtopographic features at the regional level.Moreover,NDVI and barometric pressure were found to enhance the seasonal spatial variations of the MEE.This comprehensive analysis provides deep insights into the mountain science and responses to climate change.

mass elevation effectspatiotemporal differentiationlandform regionalizationGeodetectorQinghai-Tibet Plateau

高煜、刘琳、张正勇、田浩、陈泓瑾、张雪莹、张明羽、王统霞、康紫薇、余凤臣

展开 >

石河子大学理学院,石河子 832000

绿洲城镇与山盆系统生态兵团重点实验室,石河子 832003

石河子大学水利建筑工程学院,石河子 832000

山体效应 时空分异 地貌分区 地理探测器 青藏高原

国家自然科学基金项目

41761108

2024

地理学报
中国地理学会 中国科学院地理科学与资源研究所

地理学报

CSTPCDCSSCICHSSCD北大核心
影响因子:3.3
ISSN:0375-5444
年,卷(期):2024.79(7)
  • 34