首页|基于TD-GNNWR的武汉市房价因子空间非平稳性研究

基于TD-GNNWR的武汉市房价因子空间非平稳性研究

扫码查看
城市住房价格与其影响因子间的回归关系具有显著的空间非平稳性和复杂的非线性特征.针对传统欧式距离难以有效描述房价建模的空间邻近性、经典地理加权回归(GWR)模型难以拟合复杂非线性特征等问题,本文采用出行时间(TD)作为空间距离度量方法,并引入空间加权神经网络建立了一种基于出行时间的地理神经网络加权回归(TD-GNNWR)方法,进而构建了基于TD-GNNWR的城市房价估算模型.在武汉市2019年二手房数据的建模中,TD-GNNWR模型相比GWR模型拟合精度提升16%,且更精确地捕获了局部空间非平稳特征,可以更好地解释影响因子对武汉市房价的作用机制及城市区划导致的空间差异.
Spatial non-stationarity assessments of housing prices in Wuhan based on a TD-GNNWR model
Urban housing prices are influenced by various factors,encompassing macroeconomic conditions,urban planning strategies,and the specific characteristics of housing.These elements play a crucial role in shaping urban planning and development.Nonetheless,the regression analysis depicting the interplay between urban housing prices and their influencing factors reveals significant spatial non-stationarity and intricate nonlinear characteristics.Addressing the limitations of Euclidean distance in delineating spatial proximity for housing price modeling and the challenges encountered by the geographically weighted regression model(GWR)in capturing complex nonlinear features,this study introduces travel duration(TD)as a spatial distance metric and integrates it with a spatially weighted neural network to establish a geographically neural network weighted regression model with travel duration(TD-GNNWR)to estimate housing prices.In an empirical experiment using 2019 second-hand house data in Wuhan,the TD-GNNWR model demonstrates a 16%enhancement in fitting accuracy compared to the GWR model.The TD-GNNWR model notably enhances accuracy within sparsely sampled regions and better mimics their spatial distribution.Moreover,it adeptly captures spatial non-stationarity,offering a more precise elucidation of factors influencing housing prices in Wuhan and the resultant spatial discrepancies stemming from urban zoning.Our findings underscore the comprehensive impact of various factors on housing prices in Wuhan,such as building characteristics,neighborhood attributes,and transportation accessibility.Factors like greening rates,property fees,proximity to primary schools,universities,and public transportation exert substantial influence on housing prices in Wuhan,with varying directions and strengths across different areas,signifying clear spatial differentiation.The TD-GNNWR model clearly elucidates the mechanisms underlying housing price determinants while illustrating the inherent spatial non-stationarity,which is beneficial for urban planning departments and real estate managers in policy formulation,macro-control,urban planning,and investment decision-making.This work can also serve as a valuable reference for tackling challenges in urban analysis and modeling,thereby enriching methodologies within real estate research.

spatial non-stationaritytravel durationgeographically neural network weighted regressionhousing priceWuhan

吴森森、丁佳乐、严成、陈奕君、杜震洪

展开 >

浙江大学地球科学学院,杭州 310058

空间非平稳性 出行时间 地理神经网络加权回归 住房价格 武汉市

国家自然科学基金项目国家重点研发计划浙江省重点研发计划项目

420013232021YFB39009022021C01031

2024

地理学报
中国地理学会 中国科学院地理科学与资源研究所

地理学报

CSTPCDCSSCICHSSCD北大核心
影响因子:3.3
ISSN:0375-5444
年,卷(期):2024.79(8)
  • 15