首页|环境因素与暴力犯罪的非线性和空间异质性关系分析

环境因素与暴力犯罪的非线性和空间异质性关系分析

扫码查看
"环境—犯罪"间的非线性关系与空间异质性关系是导致理论争议和实证分歧的关键,但有关分析仍显碎片化,且面临依赖线性模型、共线性问题、遗漏变量等局限.本文利用机器学习中的GBDT算法和SHAP解释器,系统揭示48种建成环境及社会环境因素与北京暴力犯罪的非线性和空间异质性关系.研究表明,案例区环境因素与暴力犯罪存在7类非线性关系,各类环境因素的影响方向和边际效应呈不同变化趋势.环境因素与暴力犯罪的关联还具有不同程度的空间异质性,经K-means聚类分析,可将全域划分成6类拥有差异化犯罪引致因素的区域.犯罪模式理论的设施划分、街道眼与防卫空间理论何者成立、社会解组理论所提因素的影响都取决于环境变量取值区间和空间单元所在区位.犯罪防控应由普适性施策转向因类因地施策,公共资源投入需聚焦特定区间和重点区域.
Nonlinear and spatially heterogeneous relationship between environmental factors and violent crime:Based on interpretable machine learning method
The nonlinear relationship and spatially heterogeneous relationship between environmental factors and criminal activities are the main reasons for both the theoretical and empirical divergence,but the relevant analysis remains fragmented and faces limitations such as linear relationship hypothesis,collinearity problems and omitted variable bias.This study uses Gradient Boosting Decision Tree(GBDT)algorithm and Shapley Additive Explanation(SHAP)interpreter in machine learning to systematically reveal the nonlinear and spatially heterogeneous relationships between 48 built and social environmental factors on violent crime in Beijing.Our research has revealed the existence of seven distinct types of nonlinear relationships between environmental factors and violent crime,each exhibiting unique trends in the direction of influence and marginal effects.Furthermore,we have found that the association between environmental factors and violent crime exhibits varying degrees of spatial heterogeneity.By utilizing K-means clustering analysis,the entire area can be segmented into six distinct regions,each characterized by different critical criminogenic factors.These findings suggest that the applicability of crime geography theories,such as the classification of crime generators,attractors,and inhibitors based on crime pattern theory,the validity of street eye theory and defensible space theory,and the impact of social attributes as proposed by social disorganization theory,may depend on the value range of environmental factors and differ across locations.In light of these findings,it is recommended that crime prevention strategies shift from universal to targeted approaches,wherein public resources are allocated to specific value ranges of environmental variables and prioritized regions.

nonlinear relationshipspatial heterogeneityGradient Boosting Decision TreeSHAP interpretercrime geography

张延吉、朱春武

展开 >

福州大学人文社会科学学院,福州 350108

得州农工大学景观建筑与城市规划系,美国得克萨斯州77840

非线性关系 空间异质性 梯度提升决策树 可解释机器学习 犯罪地理学

国家社会科学基金青年项目

21CSH006

2024

地理学报
中国地理学会 中国科学院地理科学与资源研究所

地理学报

CSTPCDCSSCICHSSCD北大核心
影响因子:3.3
ISSN:0375-5444
年,卷(期):2024.79(8)
  • 10