首页|考虑配电网三相电压特征的IHPO-CSSVM电压暂降源识别

考虑配电网三相电压特征的IHPO-CSSVM电压暂降源识别

扫码查看
随着分布式新能源和电力电子设备广泛接入配电网,能源供应和负荷需求等方面呈现出新的特点.考虑到支持向量机(support vector machine,SVM)算法的超参数选择困难以及电压暂降源信号数据类别不平衡等问题,提出了一种基于完全集合经验模态分解与自适应噪声(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进的猎人猎物优化代价敏感SVM(improved hunter-prey optimizer cost-sensitive SVM,IHPO-CSSVM)的电压暂降源识别方法.通过在Matlab/Simulink仿真平台模拟电路,获得不同类型的电压暂降源,利用CEEMDAN从需求侧电压暂降信号中提取三相电压的特征向量,并计算其近似熵,构建新的特征向量,输入到IHPO-CSSVM分类器进行训练.与SVM、CSSVM、极限学习机进行比较,仿真结果表明IHPO-CSSVM的识别准确率最高,该方法能够准确地从复杂的电压信号中提取出有用的特征,并通过优化模型参数来提升识别准确率,可以有效解决配网侧的电压暂降源识别问题.
Voltage sag source identification using IHPO-CSSVM with consideration of three-phase voltage characteristics on the distribution network
With the extensive integration of distributed power sources and power electronic devices into distribution networks,new charac-teristics are manifesting in aspects of energy supply and load demand.A voltage sag source identification method combining complete en-semble empirical mode decomposition with adaptive noise(CEEMDAN)and improved hunter-prey optimizer cost sensitive support vector machine(IHPO-CSSVM)is proposed to address the difficulties in selecting hyperparameters for support vector machine(SVM)and the imbalance of voltage sag source signal data categories.By simulating circuits on the Matlab/Simulink simulation platform,different types of voltage sag sources are obtained.The CEEMDAN is used to extract the feature vectors of the three-phase voltage of the voltage sag source signal,and its approximate entropy is calculated.A new feature vector is constructed and input into the IHPO-CSSVM classifier for training.Compared with SVM,CSSVMand extreme learning machine,simulation results show that IHPO-CSSVM has the highest recogni-tion accuracy.This method can accurately extract useful features from complex voltage signals and improve recognition accuracy by opti-mizing model parameters,providing an effective solution for voltage sag problems in power systems.

complete ensemble empirical mode decomposition with adaptive noiseimproved hunter-prey optimizeralgorithm-cost-sensi-tive support vector machinedistribution network side voltage sag sources

许超、李永刚、张书伟、赵丽萍、赵会超

展开 >

国网冀北电力有限公司 张家口供电公司,河北 张家口 075600

华北电力大学 电力工程系,河北 保定 071003

完全集合经验模态分解与自适应噪声 改进的猎人猎物优化算法 代价敏感支持向量机 配网侧电压暂降

2025

电力需求侧管理
国家电网公司电力需求侧管理指导中心

电力需求侧管理

影响因子:0.615
ISSN:1009-1831
年,卷(期):2025.27(1)