首页|基于源-荷时序特性的配电网双层规划策略

基于源-荷时序特性的配电网双层规划策略

扫码查看
由于分布式电源和负荷具有时序性,导致分布式电源并网给配电网规划带来不确定性因素.针对上述问题,首先采用拉丁超立方采样生成风-光-荷时序场景,提出结合近邻传播、动态时间规整及K-中心点聚类的场景缩减方法.其次,构建双层规划模型,上层以总成本为单目标,下层以运行成本和电压偏差量为目标.上层使用单目标粒子群算法,下层使用改进的多目标粒子群算法求解,改进算法引入混沌准对立策略增强解的覆盖范围,提出一种新的惯性权重衰减机制以提高跳出局部最优解的能力.最后,从时序全场景与采用惯性权重叠加后的单场景出发,在IEEE33节点验证所提模型和算法的合理性.
Bi-level Planning Strategy for Distribution Network Based on Source-load Temporal Characteristics
Due to the temporal characteristics of distributed power sources and loads,the integration of distributed pow-er sources into power grid will introduce uncertain factors to the planning of distribution network.To address this issue,Latin hypercube sampling is employed to generate wind-solar-load temporal scenarios at first,and an AP-DTW-K-me-doids approach is proposed for scenario reduction.Second,a bi-level planning model is constructed,in whichthe total cost is taken as asingle objective at the upper-level,and the operational cost and voltage deviation form adual-objective-at the lower-level.The single-objective particle swarm optimization algorithm is used at the upper-level,while an im-proved multi-objective particle swarm optimization(MOPSO)algorithm is used at the lower-level.The improved algo-rithm incorporates a chaos quasi-oppositionstrategy to broaden the coverage of solutions,and a novel inertia weight de-cay mechanism is put forward to enhance the capability ofescapingfrom the local optima.Finally,starting from the en-tire temporal scenario and a single scenario with superposed inertia weights,the rationality of the proposed model and algorithm isvalidatedby an IEEE 33-node system.

location and capacity determinationbi-level planningmulti-objective particle swarm optimization(MOP-SO)algorithmscenario reduction

徐万、杨毅强、张令雄、夏岩、李珂

展开 >

四川轻化工大学自动化与信息工程学院,宜宾 644000

人工智能四川省重点实验室,宜宾 644000

四川省氢能源与多能互补微电网技术研究中心,绵阳 621000

选址定容 双层规划 多目标粒子群优化算法 场景缩减

2025

电力系统及其自动化学报
天津大学

电力系统及其自动化学报

北大核心
影响因子:1.209
ISSN:1003-8930
年,卷(期):2025.37(1)