首页|基于无监督学习与特征工程的电力用户行为画像

基于无监督学习与特征工程的电力用户行为画像

扫码查看
为使供电部门实现对电力用户的精准分类和特征把握,提出一种电力用户用电特征选择与行为画像的方法.首先,综合利用通用的聚类内部评价指标,实现电力用户类别的自动确定;接着,考虑特征变量间可能存在的非线性关系,综合互信息和距离相关系数指标,用启发式算法实现电力用户特征集的优选;最后,依据优选特征集对电力用户用电行为特征进行雷达图可视化,实现电力用户用电行为的行为画像刻画,为企业对用户进行具有针对性的服务提供依据.
Behavioral Portrait for Electricity Consumers Based on Unsupervised Learning and Feature Engineering
To enable the power supply enterprises to realize accurate classification and characterization of electricity consumers,an electricity consumption feature selection and behavioral portrait method for electricity consumers is pro-posed in this paper.First,a generalized internal evaluation index for clustering is comprehensively utilized to realize the automatic determination of electricity consumer categories.Then,with the consideration of the possible nonlinear re-lationship between feature variables,a heuristic algorithm is used to realize the preferred feature set of electricity con-sumers by integrating the mutual information and distance correlation indexes.Finally,based on the preferred feature set,the radar chart visualization of electricity consumption behavioral characteristics of electricity consumers is carried out,which realizes the behavioral portrait portrayal of electricity consumption behavior and provides a basis for enter-prises to provide targeted services for electricity consumers.

electricity consumption behavioral portraitclustering analysisdistance correlationfeature selection

谢宇霆、杨威、覃捷、厉韧、谭伟聪

展开 >

广东电力交易中心有限责任公司,广州 510000

用电行为画像 聚类分析 距离相关系数 特征选择

2025

电力系统及其自动化学报
天津大学

电力系统及其自动化学报

北大核心
影响因子:1.209
ISSN:1003-8930
年,卷(期):2025.37(1)