首页|水电站主变压器在线监测系统大数据故障识别与诊断研究

水电站主变压器在线监测系统大数据故障识别与诊断研究

扫码查看
文章聚焦于大数据技术在水电站主变压器动态监控体系中的应用,深度解析了大数据驱动的故障识别与诊断策略.对彭水水电站的变压器在线监控系统进行了创新升级,引入中分3 000 Plus色谱实时监控解决方案,可以全面监控变压器油中溶解气体物质、微量水分以及铁心和夹件的接地电流状况.借助大数据智能分析平台,实时处理并解析收集的数据,构建出高效的故障识别模型,并借助先进的机器学习算法进行故障预测和诊断.实践结果显示,这套新型监控系统表现出卓越的故障识别精度和预警性能,显著提高了变压器的运行稳定性和安全性,为电力设备迈向智能化维护提供了强有力的技术支撑.
Research on Fault Identification and Diagnosis of Hydropower Station Main Transformer Online Monitoring System Based on Big Data
This study explores the innovative application of big data technology in the dynamic monitoring system for hydropower station main transformers,focusing on data-driven fault identification and diagnosis strategies.We upgraded the online monitoring system at Pengshui Hydropower Station with the Zhongfen 3000 Plus chromatographic real-time monitoring solution.This upgrade enables comprehensive monitoring of dissolved gases,trace moisture,and grounding current in transformer oil.Using an intelligent big data analysis platform,we process and analyze data in real-time,constructing efficient fault identification models.Advanced machine learning algorithms are used for fault prediction and diagnosis.Results demonstrate the system's excellent fault identification accuracy and warning performance,significantly enhancing transformer operational stability and safety,and supporting intelligent power equipment maintenance.

hydropower stationmain transformeronline monitoringbig datafault identification

王浪

展开 >

重庆大唐国际彭水水电开发有限公司,重庆 409600

水电站 主变压器 在线监测 大数据 故障识别

2024

电力系统装备
《机电商报》社

电力系统装备

影响因子:0.008
ISSN:1671-8992
年,卷(期):2024.(9)