首页|基于光伏发电的多目标电力系统优化调度模型

基于光伏发电的多目标电力系统优化调度模型

扫码查看
在当前能源转型和"双碳"目标背景下,光伏发电作为清洁能源的重要组成部分,在电力系统中的比重日益增加,但光伏发电的不确定性和波动性的特点增加了我国电力系统调度的难度,严重影响电力系统运行的可靠性和安全性.文章针对包含光伏发电的电力系统,构建了基于系统有功功率总网络损失、节点电压偏差和节点无功功率越限值的多目标优化调度模型,旨在实现系统的经济性和安全性的双重优化;基于小生境机制和动态权重策略改进了粒子群算法(Particle Swarm Optimization,PSO)对优化目标进行求解;在IEEE30节点系统上进行了仿真验证,结果表明,所提模型和算法能够有效提高电力系统的优化调度性能.
Multi-objective Power System Optimization Scheduling Model with Photovoltaic Power Generation
In the current context of energy transformation and the"dual carbon"goal,the proportion of photovoltaic power generation as an important component of clean energy in the power system is increasing.However,the uncertainty and volatility of photovoltaic power generation have increased the difficulty of dispatching China's power system,seriously affecting the reliability and safety of power system operation.This article focuses on the power system containing photovoltaic power generation.Firstly,a multi-objective optimization scheduling model is constructed that takes into account the total active power loss,node voltage deviation,and node reactive power exceeding the limit value of the system.The aim is to achieve dual optimization of the system's economy and safety;Secondly,based on the niche mechanism and dynamic weight strategy,the Particle Swarm Optimization(PSO)algorithm was improved to solve the optimization objectives;Finally,simulation verification was conducted on an IEEE30 node system,and the results showed that the proposed model and algorithm can effectively improve the optimization scheduling performance of the power system.

multi objective optimizationpower system dispatchphotovoltaic power generationimprove particle swarm optimization algorithmIEEE30 node system

丁瑾、张佳

展开 >

国网江苏省电力有限公司镇江供电分公司,江苏 镇江 212000

光伏发电 多目标优化 电力系统调度 改进粒子群算法 IEEE30节点系统

2024

电力系统装备
《机电商报》社

电力系统装备

影响因子:0.008
ISSN:1671-8992
年,卷(期):2024.(10)