首页|基于DAE-GBDT的水电机组劣化趋势评估

基于DAE-GBDT的水电机组劣化趋势评估

扫码查看
为对水电机组运行状态进行准确的评估,从而保障水电机组安全运行,文章提出一种基于DAE-GBDT健康模型的水电机组劣化程度评估方法.利用深度自编码器(DAE)对工况参数中的关键信息进行压缩凝练.用梯度提升决策树(GBDT)建立健康模型,学习振摆值与工况参数之间的潜在关系.根据所构造健康模型和机组运行数据得到机组的劣化情况.通过某抽水蓄能机组实例,验证了所提模型具有更高精度,能生成可靠的劣化趋势.
Degradation Trend Assessment of Hydropower Units Based on DAE-GBDT
To accurately assess the operational status of hydropower units and ensure their safe operation,this paper proposes a method for evaluating the degradation degree of hydropower units based on a health model using Deep Autoencoder(DAE)and Gradient Boosting Decision Trees(GBDT).The deep autoencoder(DAE)is utilized to compress and refine critical information from operating parameters.Subsequently,a health model is established using gradient boosting decision trees(GBDT)to learn the potential relationship between vibration values and operating parameters.Finally,the degradation condition of the unit is obtained based on the constructed health model and operational data.The proposed model is validated using a case study of a pumped storage unit,demonstrating higher accuracy and the ability to generate reliable degradation trends.

DAEhydropower unitsdeterioration assessmentGBDT

林峰平、陈亦真

展开 >

深圳市康必达控制技术有限公司,广东 深圳 518000

湖北工业大学电气与电子工程工程学院,湖北 武汉 430068

深度自编码器 劣化评估 抽水蓄能机组 GBDT

湖北省重点研发计划项目

2023BAB209

2024

电力系统装备
《机电商报》社

电力系统装备

影响因子:0.008
ISSN:1671-8992
年,卷(期):2024.(10)