首页|基于深度学习和有限状态机的智能化电缆安装管控技术研究

基于深度学习和有限状态机的智能化电缆安装管控技术研究

扫码查看
文章提出了一种基于深度学习和有限状态机的智能化电缆安装管控方法.通过识别处理电缆附件安装视频,该方法能够记录工序时长并判断工艺是否达标.建立基于电缆附件安装视频的数据集,构建基于YOLOv8的目标检测深度神经网络模型学习电缆附件特征.定义有限状态机模型记录安装时间和过程,并利用深度神经网络检测结果确定当前状态以管理安装工艺.比较工序状态转变时间与标准时间以判断达标情况.试验结果表明,该方法能够快速准确地识别电缆附件安装过程,并有效判断工艺是否达标.该方法可用于提高电缆安装效率和质量,并为智能电缆安装系统提供技术支撑.
Research on Intelligent Cable Installation Control Technology Based on Deep Learning and Finite State Machine
This study proposes an intelligent cable installation control method based on deep learning and finite state machine.By identifying and processing the installation video of cable accessories,this method can record the duration of the process and determine whether the process meets the standards.Firstly,establish a dataset based on cable accessory installation videos,and then build a deep neural network model for object detection based on YOLOv8 to learn cable accessory features.Next,define a finite state machine model to record installation time and process,and use deep neural network detection results to determine the current state for managing installation processes.Finally,compare the process state transition time with the standard time to determine the compliance status.The experimental results show that this method can quickly and accurately identify the installation process of cable accessories and effectively determine whether the process meets the standards.This method can be used to improve the efficiency and quality of cable installation,and provide technical support for intelligent cable installation systems.

deep neural networkfinite state machineintelligent controlinstallation of cable accessoriesprocess identificationvideo analysisYOLOv8object detection

刘沛轩、尹林、李泰伟、张晨晖、杨宇平

展开 >

国网江西省电力有限公司南昌供电分公司,江西 南昌 330096

国网江西省电力有限公司,江西 南昌 330001

深度神经网络 有限状态机 智能管控 电缆附件安装 工艺识别 视频分析 YOLOv8 目标检测

2024

电力系统装备
《机电商报》社

电力系统装备

影响因子:0.008
ISSN:1671-8992
年,卷(期):2024.(11)