首页|基于改进YOLOv5n的输电线故障隐患检测模型研究

基于改进YOLOv5n的输电线故障隐患检测模型研究

扫码查看
为实现输电线故障隐患的精准高效识别,文章提出一种基于改进YOLOv5n的输电线故障检测模型.替换主干网络为FasterNet网络,不仅通过局部卷积PConv减少冗余计算,而且还能有效提取特征,以增强模型对重要特征的表达能力.结合运用ELAN思想的C2f模块和Res2net结构,提出C2f-Res2模块,对输入图像进行更深粒度层次上的多尺度特征融合,进一步加强网络的特征提取能力.使用WIoU损失函数对原损失函数CIoU进行替换,提高锚框的质量.试验结果表明,基于改进YOLOv5n输电线故障检测模型的平均准确度均值为93.2%,检测速度为94.2 帧·s-1.有效减少了输电线故障检测中的错检漏检情况,可更为高效地对输电线故障隐患进行识别定位.
Research on Transmission Line Fault Hidden Danger Detection Model Based on Improved YOLOv5n
In order to realize accurate and efficient identification of transmission line fault hazards,this paper proposes a transmission line fault detection model based on improved YOLOv5n.First,the backbone network is replaced with FasterNet network,which not only reduces redundant computation by local convolutional PConv,but also effectively extracts features to enhance the model's ability to express important features.Secondly,combining the C2f module and Res2net structure using the ELAN idea,the C2f-Res2 module is proposed to perform multi-scale feature fusion on the input image at a deeper granularity level to further enhance the feature extraction capability of the network.Finally,the original loss function CIoU is replaced using the WIoU loss function to improve the quality of the anchor frame.The experimental results show that the average accuracy of this improved YOLOv5n transmission line fault detection model is 93.2%and the detection speed is 94.2 frames-s-1.It effectively reduces the errors and omissions in the detection of transmission line faults,and can identify and localize the transmission line fault hazards more efficiently.

object detectionimage processingtransmission line fault detectionYOLOv5

侯鹏飞、张小栋、唐志勇、沈海鸣、陶庆

展开 >

新疆大学机械工程学院,新疆 乌鲁木齐 830047

西安交通大学机械工程学院,陕西 西安 710049

国网新疆电力有限公司阿克苏供电公司,新疆 阿克苏 843000

目标检测 图像处理 输电线故障隐患检测 YOLOv5

2024

电力系统装备
《机电商报》社

电力系统装备

影响因子:0.008
ISSN:1671-8992
年,卷(期):2024.(11)