首页|基于改进PointCNN模型的水电厂升压站三维点云分割方法

基于改进PointCNN模型的水电厂升压站三维点云分割方法

扫码查看
文章提出了一种基于改进PointCNN模型的水电厂升压站设备点云分割方法.先采用PointCNN模型处理复杂无序点云,通过X-Conv层操作提取点云的局部特征和全局特征,并针对升压站设备具有复杂几何结构的特点对PointCNN模型进行优化,通过引入自注意力机制,增强其在处理复杂设备点云数据时的性能.试验结果表明,改进后的模型在升压站设备点云数据集分割任务中取得了显著的效果.
Three Dimensional Point Cloud Segmentation Method for Hydropower Plant Booster Station Based on Improved Pointcnn Model
The article proposes a point cloud segmentation method for hydropower plant booster station equipment based on an improved PointCNN model.Firstly,the PointCNN model is used to process complex and unordered point clouds.Local and global features of the point cloud are extracted through X-Conv layer operations.The PointCNN model is optimized for the complex geometric structure of the booster station equipment,and its performance in processing complex device point cloud data is enhanced by introducing self attention mechanism.The experimental results show that the improved model has achieved significant results in the segmentation task of the point cloud dataset of the booster station equipment.

point cloud segmentationPointCNNself attention mechanismboosting stationdeep learning

俞荣厚

展开 >

重庆大唐国际彭水水电开发有限公司,重庆 409600

点云分割 PointCNN 自注意力机制 升压站 深度学习

2024

电力系统装备
《机电商报》社

电力系统装备

影响因子:0.008
ISSN:1671-8992
年,卷(期):2024.(11)