首页|基于iDGA-LSTM的分布式光伏出力时空协同概率预测方法

基于iDGA-LSTM的分布式光伏出力时空协同概率预测方法

扫码查看
由于光伏出力具有较大的不确定性,高比例分布式光伏的接入将给新型电力系统的安全稳定运行带来巨大挑战,准确且可靠的分布式光伏出力预测对提升新型电力系统运行安全性具有重要意义.在此背景下,考虑分布式光伏出力的时空耦合特性和不确定性,提出一种基于改进分位数回归与动态图注意力-长短期记忆网络(iDGA-LSTM)的分布式光伏出力时空协同概率预测方法.首先,考虑广域范围内分布式光伏出力的空间相关性,构建了基于图注意力网络的分布式光伏空间相关特征提取与聚合模型;接着,针对提取得到的分布式光伏空间相关性特征,构建了基于动态图注意力-长短期记忆网络的分布式光伏时空耦合特征提取模型;然后,综合考虑分布式光伏出力的时空耦合特性,结合数值气象预报特征,构建了基于改进分位数回归的分布式光伏出力概率预测模型.最后,以某实际分布式光伏数据为例对所提预测方法进行验证,算例分析结果表明,所提方法有效提高了分布式光伏出力预测的可靠性与精准性,能够为不同风险水平下的电力系统运行提供参考.
Spatio-Temporal Cooperative Probability Forecasting Method for Distributed Photovoltaic Output Based on iDGA-LSTM
Due to the significant uncertainty of photovoltaic output,the high proportion of distributed photovoltaic integration will pose a huge challenge to the safe and stable operation of the new power system.Accurate and reliable distributed photovoltaic output forecasting is of great significance to improve the security of the new power system operation.Under this background,considering the spatio-temporal coupling characteristics and uncertainty of distributed photovoltaic output,this paper proposes a spatio-temporal cooperative probability forecasting method of distributed photovoltaic output based on the improved quantile regression based dynamic graph attention and the long short-term memory network(iDGA-LSTM).Firstly,considering the spatial correlation of distributed photovoltaic output across a wide area,a distributed photovoltaic spatial feature extraction and aggregation model based on the graph attention network is constructed.Secondly,regarding the extracted distributed photovoltaic spatial correlation features,a distributed photovoltaic spatio-temporal coupling feature extraction model based on the dynamic graph attention and the long short-term memory network is constructed.Then,taking into account the spatio-temporal coupling characteristics of distributed photovoltaic output and combining them with numerical meteorological forecasting features,a probability forecasting model for distributed photovoltaic output based on improved quantile regression is constructed.Finally,the proposed forecasting method is verified with some actual distributed photovoltaic data.The simulation results show that the proposed method improves the reliability and accuracy of distributed photovoltaic output forecasting and provides references for the power system operation strategies with different risk levels.

graph attention networklong short-term memory networkdistributed photovoltaicquantile regressionprobability forecastingspatio-temporal cooperation

张昆明、马龙义、章天晗、钟红梅、谭伟涛、韦园清、林振智

展开 >

浙江大学电气工程学院,浙江省 杭州市 310027

广东电网有限责任公司惠州供电局,广东省惠州市 516000

图注意力网络 长短期记忆网络 分布式光伏 分位数回归 概率预测 时空协同

2025

电力系统自动化
国网电力科学研究院

电力系统自动化

北大核心
影响因子:3.068
ISSN:1000-1026
年,卷(期):2025.49(1)