首页|基于多时空尺度特性的风电场物理-数据融合动态等值建模

基于多时空尺度特性的风电场物理-数据融合动态等值建模

扫码查看
文中提出了一种风电场动态等值建模方法.核心思路是将风电场对象的物理特征分析与数据分析进行有效融合,构建出反映风电场暂态特性的数据特征,并针对风电暂态波动多变特征提出基于形状的距离的分群聚类算法,从而实现场站内具有相似动态风电机组的分群等值.首先,围绕风电场多时空尺度特征展开物理特性分析,提出反映风电场站动态特性的核心因素集合;其次,针对核心因素多且存在相关性这一问题,采用降噪自编码器算法来对核心因素集合进行降维,去除冗余信息后构建数据特征;然后,引入基于形状的距离度量的聚类算法,实现风电场发电单元分群;最后,以某风电场为例,在PSCAD/EMTDC平台仿真验证了所提方法的有效性.
Dynamic Equivalent Modeling with Physics-Data Fusion for Wind Farm Based on Characteristics of Multiple Spatio-Temporal Scales
A dynamic equivalent modeling method for wind farms is proposed.The core idea is to effectively integrate the physical characteristics analysis and data analysis of wind farms,to construct data features reflecting the transient characteristics of wind farms.And a clustering algorithm based on shape-based distance is proposed to address the transient fluctuations with variable characteristics of wind power,achieving clustering equivalence of wind turbines with similar dynamic behaviors within a wind farm.First,based on the multiple spatio-temporal scale characteristics of wind farms,the core factor set are proposed to characterize the dynamic characteristics of the wind farm.Then,considering the correlation between multiple core factors,the denoising autoencoder algorithm is employed to reduce dimensionality and eliminate redundant information to construct data features.In addition,a clustering algorithm based on the shape-based distance is introduced to achieve clustering of power generation units for wind farms.Finally,taking a certain wind farm as a case,the effectiveness of the proposed method is verified through simulation on the PSCAD/EMTDC platform.

equivalent modelingwind farmmultiple spatio-temporal scalesdenoising autoencoderclusteringphysics-data fusion model

黄师禹、朱林、胡永浩、陈乐柯、管霖

展开 >

华南理工大学电力学院,广东省 广州市 510641

等值建模 风电场 多时空尺度 降噪自编码器 分群聚类 物理-数据融合模型

2025

电力系统自动化
国网电力科学研究院

电力系统自动化

北大核心
影响因子:3.068
ISSN:1000-1026
年,卷(期):2025.49(1)