首页|计及分布式电源出力不确定性的虚拟电厂鲁棒优化调度

计及分布式电源出力不确定性的虚拟电厂鲁棒优化调度

扫码查看
随着分布式电源(distributed generation,DG)大规模接入配电网,为了平抑其出力波动性和间歇性带来的影响,并充分利用配电网中储能、可控负荷等灵活性资源,虚拟电厂优化调度成为一种行之有效的方法.但如何实现在不确定性情况下虚拟电厂优化调度策略的鲁棒性成为需要研究的内容.为此,文章首先构建了确定性场景下的虚拟电厂优化调度模型,通过二阶锥变换将确定性场景下的虚拟电厂优化调度模型由难以求解的混合整数非线性模型转化为容易求解的混合整数二阶锥模型,并进行求解;然后,通过鲁棒优化理论,构建了考虑DG出力不确定性场景下的鲁棒优化调度模型,并通过鲁棒对等变换和割平面方法将其分别转变为2个确定性场景下的虚拟电厂优化调度模型,二者交替迭代求出对应于不确定性模型的鲁棒优化解.最后,通过 IEEE33 节点算例分析,证明了所提模型及求解方法的有效性.
Robust Optimal Scheduling of Virtual Power Plant Considering Output Uncertainty of Distributed Generation
With the large-scale integration of distributed generation(DG)into the distribution network,in order to stabilize the impact of output fluctuation and intermittence,and make full use of flexible resources such as energy storage and controllable loads in the distribution network,virtual power plant optimal scheduling has become an effective method.However,how to achieve the robustness of virtual power plant optimal scheduling strategies under uncertainty has become a research topic.For this purpose,this paper presents a robust optimal scheduling model and optimization method of virtual power plant considering output uncertainty of distributed generation.Firstly,a virtual power plant optimal scheduling model is constructed in deterministic scenarios.The virtual power plant optimal scheduling model in deterministic scenarios is transformed from a difficult to solve mixed integer nonlinear model to an easy to solve mixed integer second-order cone model through second-order cone transformation,and solved accordingly.Then,using robust optimization theory,a robust optimal scheduling model considering the uncertainty of DG output is constructed,and it is transformed into two virtual power plant optimal scheduling models under two deterministic scenarios using robust equivalence transformation and cutting plane method.The two alternate iterations are used to obtain robust optimal solutions corresponding to the uncertainty model.Finally,the effectiveness of the proposed model and solution method is demonstrated through an IEEE33 node example analysis.

virtual power plantrobust optimizationuncertaintyDG output

康田园、刘科研、贾东梨、叶学顺

展开 >

中国电力科学研究院有限公司,北京市 海淀区 100192

虚拟电厂 鲁棒优化 不确定性 DG出力

中国电科院长线攻关项目

PD83-22-005

2024

电力信息与通信技术
中国电力科学研究院

电力信息与通信技术

CSTPCD
影响因子:0.699
ISSN:1672-4844
年,卷(期):2024.22(2)
  • 19