首页|电力物联网边缘计算依赖型任务卸载的低时延调度技术

电力物联网边缘计算依赖型任务卸载的低时延调度技术

扫码查看
现有电力物联网任务调度技术难以满足任务的低时延和实时性要求,且未考虑到电力物联网任务之间的内部依赖性.针对该问题,融合深度强化学习任务卸载模型和 Sequence-to-Sequence 神经网络,使用有向无环图表示任务及依赖关系,引入ε-贪婪探索机制和优先经验回放来鼓励探索和提高模型训练效率,构建基于深度强化学习的电力物联网任务卸载模型.通过与其他任务卸载算法进行对比,所提模型的任务平均处理时延显著优于其他算法,验证在电力物联网依赖型任务低时延调度方面的优越性.
Low Latency Scheduling Techniques for Power IoT Edge Computing Dependent Tasks
Existing power IoT task scheduling techniques are difficult to meet the low-latency and real-time requirements of tasks and do not take into account the internal dependencies between power IoT tasks.To address this problem,a deep reinforcement learning-based task offloading model for power IoT is constructed by integrating the DRLTO task offloading model and Sequence-to-Sequence neural network,using a directed acyclic graph to represent the tasks and their dependencies,and introducing the ε-greedy exploration mechanism and prioritized experience replay to encourage exploration and improve the model training efficiency.By comparing with other task offloading algorithms,the average task processing latency of the proposed model in this paper significantly outperforms other algorithms,verifying the superiority in low-latency scheduling of power IoT-dependent tasks.

power internet of thingsedge computingtask offloadingdeep reinforcement learningSequence-to-Sequence network

王凯、张旭、张倩宜、徐天一、徐志强

展开 >

国网天津市电力公司信息通信公司,天津市 河北区 300140

天津市能源大数据仿真企业重点实验室,天津市 河北区 300140

天津大学 智能与计算学部,天津市 津南区 300350

天津市先进网络与应用重点实验室,天津市 津南区 300350

展开 >

电力物联网 边缘计算 任务卸载 深度强化学习 Sequence-to-Sequence神经网络

国家电网天津市电力公司科技项目

2024

电力信息与通信技术
中国电力科学研究院

电力信息与通信技术

CSTPCD
影响因子:0.699
ISSN:1672-4844
年,卷(期):2024.22(6)
  • 6