首页|基于自注意力的GIS缺陷文本关系抽取方法

基于自注意力的GIS缺陷文本关系抽取方法

扫码查看
在配电网的日常巡检维护过程中,气体绝缘组合电器(gas insulated switchgear,GIS)积累了大量缺陷文本,对这些文本中的知识进行结构化抽取能够有效提升设备运维效率.为此,文章提出了一种基于自注意力的GIS缺陷文本关系抽取方法.首先,利用预训练好的语言表示模型获得输入句子以及实体对的字嵌入向量.随后,利用自注意力神经网络对抽取出来的句子嵌入进行分析,抽取出句子特征向量.然后,通过对实体对的嵌入进行最大池化操作获得实体特征向量,并对实体在句子中的位置进行编码获得位置特征.最后,对句子特征、实体特征以及位置特征进行分类从而获得实体对的关系.实验结果证实所提算法的有效性,并在数据集上的精确度达到70%以上,为构建大规模运维知识图谱提供有力工具.
A Relation Extraction Method for GIS Defect Text Based on Self-attention
In the process of daily inspection and maintenance of power distribution networks,gas insulated switchgear(GIS)has accumulated a large number of defective texts.Structured extraction of the knowledge in these texts can effectively improve the efficiency of equipment operation and maintenance.To this end,this paper proposes a self-attention based relational extraction method for GIS defective text.First,a pre-trained language representation model is utilized to obtain word embedding vectors of input sentences as well as entity pairs.Subsequently,the extracted sentence embeddings are analyzed using a self-attentive neural network to extract sentence feature vectors.Then,entity feature vectors are obtained by performing a maximum pooling operation on the embeddings of the entity pairs,and positional features are obtained by encoding the position of the entity in the sentence.Finally,the sentence features,entity features,and positional features are classified to obtain the relationships of the entity pairs.The experimental results confirm the effectiveness of the proposed algorithm and achieve more than 70%accuracy on the dataset,which provides a powerful tool for constructing large-scale O&M knowledge graphs.

relation extractionneural networkGISnatural language processingknowledge extraction

田鹏、刘玉娇、李国亮、林煜清、单媛媛

展开 >

国网山东省电力公司枣庄供电公司,山东省 枣庄市 277000

关系抽取 神经网络 GIS 自然语言处理 知识抽取

国网山东省电力公司科技项目

520610220002

2024

电力信息与通信技术
中国电力科学研究院

电力信息与通信技术

CSTPCD
影响因子:0.699
ISSN:1672-4844
年,卷(期):2024.22(9)