首页|SSP-RCP耦合情景的城市局地气候分区模拟——以南京市为例

SSP-RCP耦合情景的城市局地气候分区模拟——以南京市为例

扫码查看
基于情景的土地利用变化模拟能够展现未来城市的多种可能性,是当前土地覆被变化领域的热点.现有研究地表分类体系中的建设用地无法精确刻画城市内部空间形态,且土地模拟研究中不统一的模拟情景将影响土地模拟结果的可比性,因此,本文采用了国际耦合模式比较计划(Coupled Model Intercomparison Project,CMIP)最新提出的三种典型 SSP-RCP 耦合情景,以南京市为研究区,开展了未来近期(2030 年)、中期(2060 年)和远期(2090年)的局地气候分区(local climate zones,LCZ)时空模拟.结合马尔可夫模型和多目标规划预测未来耦合情景下各LCZ类型的数量需求,并通过未来土地利用变化模拟模型实现LCZ的空间分布模拟.结果表明:①SSP126情景下生态用地(LCZ A/B/D/G)得到了有效保护,且建筑用地(LCZ 1~6、LCZ 8~10)在主城区的扩张得到有效控制.②SSP245 情景中,经济发展的同时也顾及了生态环境保护,尽管建筑用地扩张明显,但生态用地(LCZ A/B/D/G)的面积仅出现了轻微下降.③SSP585情景建筑用地(LCZ 1~6、LCZ 8~10)和耕地(LCZ D)扩张态势十分显著;21世纪中、后期的林地(LCZ A、LCZ B)和水体(LCZ G)将遭到严重破坏.本文首次开展了自然与人文双重驱动下的城市LCZ时空模拟,研究成果能够直接应用于城市气候与规划领域.
Urban local climate zoning simulation coupled with SSP-RCP scenarios:A case study of Nanjing
Land use and cover change(LUCC)is a remarkable manifestation of the impacts exerted by human activities on the natural environment,and land use scenario simulation is one of the main ways to study LUCC.Scenario-based land use change simulation can show multiple possibilities of future cities and is currently a hot spot in the field of land cover change.However,the existing surface classification system of construction land in this filed cannot accurately portray the internal spatial morphology of the city,and the non-uniform simulation scenarios will affect the comparability of the land simulation results.To address these issues,with the help of three typical SSP-RCP coupling scenarios proposed by the international Coupled Model Intercomparison Project and the local climate zones(LCZ)that can depict the internal morphology of the city,this paper carried out spatial and temporal simulation of the LCZ for the near-term(2030),medium-term(2060),and long-term(2090)in the case of Nanjing.The study employed Markov,multiple objective programming(MOP),and future land use simulation(FLUS)models to simulate the spatial and temporal changes of LCZs under different SSP-RCPs coupling scenarios.In terms of quantity prediction of land types,based on the LCZ classification results in the base period,we first used Markov to determine the quantity scale of each LCZ type in different future periods along the historical scenario.Then,structure optimization was carried out by MOP to predict the land demand of LCZ types under different SSP-RCP coupling scenarios.In terms of spatial simulation of land types,20 driving factors such as physical geography,socio-economic,and location conditions were collected,and spatial distribution simulation of the quantity scales of different LCZ types under the future scenarios obtained above was realized through the FLUS model.Finally,the Receiver Operating Characteristic curve corresponding to the probability of suitability of each LCZ type was calculated based on the logistic regression model,and the area under the curve(AUC)value of this curve indirectly reflects the simulation accuracy.Our results showed that:①With respect to the validation of the simulation accuracy,the average AUC value of suitability probability of all LCZ types was 0.73,with relatively high AUC values(>0.85)for land types of dense high-rise(LCZ 1),compact mid-rise(LCZ 2),and open mid-rise(LCZ 5),while the AUC values of compact low-rise(LCZ 3),sparsely built(LCZ 9),dense trees(LCZ A),and water(LCZ G)ranged between 0.65 and 0.75.②From the LCZ simulation results of different scenarios,ecological land(LCZ A/B/D/G)was effectively protected in the SSP126 scenario,and the expansion of building land(LCZ 1-6、LCZ 8-10)in the main urban area was effectively controlled.Second,in the SSP245 scenario,economic development is also taken into account with ecological protection,and the area of ecological land(LCZ A/B/D/G)only slightly decreases despite the obvious expansion of building land.Finally,in the SSP585 scenario,the expansion of building land(LCZ 1-6、LCZ 8-10)and arable land(LCZ D)is very significant,and forest land(LCZ A,LCZ B)and water bodies(LCZ G)in the mid and late 21st century are seriously damaged.

land simulationlocal climate zonesSSP-RCP scenariosMarkov-MOP-FLUS modelspatiotemporal simulation

周亮、马磊、陈成

展开 >

南京大学 地理与海洋科学学院,南京 210023

南京国图信息产业有限公司,南京 210036

江苏省测绘工程院,南京 210013

土地模拟 局地气候分区 SSP-RCP情景 Markov-MOP-FLUS模型 时空模拟

自然资源部国土卫星遥感应用重点实验室开放基金国家自然科学基金面上项目遥感科学国家重点实验室开放基金自然资源部国土空间规划研究中心外协项目

KLSMNR-K20230142171304OFSLRSS202304ZX202301011

2024

地理信息世界
中国地理信息产业协会 黑龙江测绘地理信息局

地理信息世界

CSTPCD
影响因子:0.826
ISSN:1672-1586
年,卷(期):2024.31(2)
  • 40