首页|基于随机森林模型的山区铁路线暴雨洪灾风险评估——以朔黄铁路原平段为例

基于随机森林模型的山区铁路线暴雨洪灾风险评估——以朔黄铁路原平段为例

扫码查看
随机森林决策树分裂易受数据集不平衡性及变异性的影响,导致权重分配和预测结果出现偏差.山区洪灾风险评估影响因素众多、数据差异性大,如何降低数据不平衡性以及变异性的影响,直接关系各因素重要性的科学排序以及评价结果的准确性.该文依据流域灾害系统理论,从致灾因子和孕灾环境选取9个风险指标,构建山区铁路洪灾风险评估数据集,在此基础上,分别采用基于Gini指数和Sigmoid函数两种分裂方式的随机森林模型进行对比分析,之后采用最优模型对朔黄铁路原平段沿线洪灾风险进行预测,并利用实地调研结果对预测结果进行验证.研究发现:地形要素(高程、坡度、坡向)与洪灾风险密切相关,孕灾环境作为产生暴雨洪灾风险的内因,在山区铁路洪灾风险评估中起决定性作用;基于Sigmoid函数分裂方式的随机森林模型在分裂过程中可以降低信息不纯度和数据变异性对结果的影响,精度更优,预测结果与实际吻合度较高,方法适用性较强.研究成果可为山区铁路暴雨洪灾风险评估提供方法参考.
Risk Assessment on Railway Line in Mountainous Area under Rainstorm and Flood Situation Based on Random Forest Algorithm:A Case Study of the Yuanping Section of Shuohuang Railway
The split process of random forest decision tree is affected by the unbalance and variability of data set,which will lead to the bias of weight allocation and prediction results.For railway in mountainous area,the influencing factors of flood risk are numerous,and the differences between data are large.How to improve the influence of data imbalance and variability is directly related to the ranking of the importance of each factor and the accuracy of evaluation results.In this regard,nine risk indicators from disaster causing factors and disaster pregnant environment were selected based on the theory of watershed disaster system to construct the flood risk assessment data set for railway in mountainous area.On this basis,the improved random forest algo-rithm based on Gini split function and Sigmoid split function were respectively used for model training and comparative analy-sis.The optimal model was used to forecast the flood risk along the Yuanping section of Shuohuang Railway,and the results of field investigation were used to verify the forecast results.The results show topographic factors(elevation,slope and aspect)are closely related to flood risk.As the internal cause of flood risk,disaster environment plays a decisive role in the flood risk as-sessment of railway in mountainous area.The improved random forest algorithm based on Sigmoid split function can improve the information purity,reduce the data variation and improve the accuracy during the split process,and the prediction results are in good agreement with the field situation.The research results can provide a reference for the risk assessment of railway in mountainous area under rainstorm and flood situation.

mountain railwaysrandom forestrisk assessmentrainstorm and flood

韩帅兵、苏成、寇晓康、王天亮、李跃鹏、杨仪、程建蕊

展开 >

石家庄铁道大学土木工程学院,河北石家庄 050043

道路与铁道工程安全保障省部共建教育部重点实验室(石家庄铁道大学),河北石家庄 050043

中核三维地理信息工程技术研究中心,河北石家庄 050043

国能朔黄铁路发展有限责任公司,山西原平 034100

河北省制图院,河北石家庄 050031

展开 >

山区铁路 随机森林 风险评估 暴雨洪灾

河北省高层次人才项目国家自然科学基金青年科学基金河北省自然科学基金

C2022102541801277D2021210002

2024

地理与地理信息科学
河北省科学院地理科学研究所

地理与地理信息科学

CSTPCDCHSSCD北大核心
影响因子:1.122
ISSN:1672-0504
年,卷(期):2024.40(2)
  • 32