首页|基于改进U-Net网络的遥感影像农村道路矢量中心线提取及优化

基于改进U-Net网络的遥感影像农村道路矢量中心线提取及优化

扫码查看
遥感影像中农村道路矢量中心线的准确提取对乡村规划和地理信息数据库建设具有重要意义.针对现有深度学习方法未能充分利用上下文信息,且在下采样过程中易造成图像分辨率下降和局部特征丢失的问题,该文改进U-Net网络模型以提高提取结果的准确性.首先,网络结构设计两次下采样处理,并将上下文两处特征信息用跳跃层连接,使输出的道路细节清晰;其次,为避免样本不均衡导致训练效果不理想,采用交叉熵损失函数与广义骰子损失函数叠加的方式提升训练效果;最后,采用邻域质心投票算法和融合算法对提取的道路进行矢量化和中心线优化,得到高精度的农村道路矢量中心线.试验结果表明:改进方法在复杂场景的农村道路矢量中心线提取中准确率达95.03%,较4种对比算法(U-Net、DC-Net、PA-Net、SM-Net)具有明显优势.
Extraction and Optimization of Rural Road Vector Centerline from Remote Sensing Images Based on Improved U-Net Network
Accurate extraction of rural road vector centerlines from remote sensing images is of great significance to rural plan-ning and the construction of geographic information database.The existing image segmentation algorithms,such as U-Net net-work,can not effectively solve the influence of background information such as terrain shadows and trees on road extraction,so this paper improves the U-Net network to improve the accuracy of segmentation results.Firstly,the designed network structure is downsampled twice,and the two information features in the context are connected by a jump layer,so that the output road has clear detail expression ability.Secondly,in order to reduce the influence of poor training effect caused by unbalanced samples,this paper adopts the superposition of cross entropy loss function and generalized dice loss function to improve the training effect.Finally,in order to get the high-precision rural road vector centerline,the existing neighborhood centroid voting algorithm and fusion algorithm are used to vectorize and optimize the extracted road centerline.The experimental results show that the im-proved U-Net network combined with fusion algorithm is feasible in extracting the centerline of rural road vector,with an accu-racy rate of 95.03%,which is obviously improved compared with the existing algorithms.The algorithm proposed in this paper provides a new idea and method for high-precision extraction of rural road vector centerline from remote sensing images.

improved U-Net networkremote sensing imagenetwork segmentationrural road extractionvector line optimization

王怡君、李旺平、柴成富、尉文博、邓灵芝

展开 >

甘肃省地图院,甘肃兰州 730099

兰州理工大学土木工程学院,甘肃兰州 730050

甘肃省应急测绘工程研究中心,甘肃兰州 730050

中煤航测遥感集团有限公司,陕西西安 710199

中煤航测遥感集团有限公司企业技术中心,陕西西安 710199

展开 >

改进U-Net网络 遥感影像 网络分割 农村道路提取 矢量线优化

甘肃省自然科学基金项目甘肃省青年科技基金项目

22JR5RA24723JRRA830

2024

地理与地理信息科学
河北省科学院地理科学研究所

地理与地理信息科学

CSTPCDCHSSCD北大核心
影响因子:1.122
ISSN:1672-0504
年,卷(期):2024.40(4)
  • 24