首页|限幅型非光滑吸振器模型的稳定性与周期运动研究

限幅型非光滑吸振器模型的稳定性与周期运动研究

扫码查看
本文研究具有分段光滑特性的限幅型吸振器模型的稳定性与周期运动。建立一类限幅型非光滑吸振器的动力学模型,探讨模型容许平衡点的存在性,通过Liénard-Chipart稳定性准则,分析容许平衡点的稳定性。通过参数变换,将限幅型吸振器模型转化为具有两个切换流形的四维分段光滑系统。通过计算系统首次积分,获得四维含参分段光滑动力系统在其未扰系统存在一族周期轨条件下的 Melnikov函数。探讨不同参数条件下系统周期轨的存在性及个数,并利用数值模拟方法给出其相图构型,验证理论结果的正确性。研究结果表明不同的间隙参数影响系统周期轨个数及相对位置。
Stability and Periodic Motions for a Non-Smooth Vibration Absorber Model with Limited Amplitude
In this paper,the stability and periodic motions for a limited vibration absorber model with the piecewise smooth property are studied.The dynamic model of a kind of limited vibration absorber is established.The existence of the admissible equilibrium point of the model is discussed,and the stability of the admissible equilibrium point is analyzed by Liénard-Chipart stability criterion.With the aid of pa-rameter transformations,the vibration absorber model with limited amplitude is transformed into a four-dimensional piecewise smooth system with two switching manifolds.By the first integrals of the system,the Melnikov function of the four-dimensional parametric piecewise smooth dynamic system under the condition that the unperturbed system has a family of periodic orbits is obtained.The existence and number of periodic orbits of the system under different parameter conditions are discussed,and the phase diagram configuration is given by numerical simulation method to verify the correctness of the theoretical results.The results show that different clearance parameters affect the number and relative positions of periodic orbits.

non-smooth vibration absorberhigh-dimensional piecewise smooth systemsstabilityperiodic motionsMelnikov method

郭子玉、李静、朱绍涛、张伟

展开 >

北京工业大学 数学统计学与力学学院,北京 100124

清华大学 材料学院,北京 100084

北京工业大学 信息学部,北京 100124

广西大学 土木建筑工程学院,南宁 530004

展开 >

非光滑吸振器 高维分段光滑系统 稳定性 周期运动 Melnikov方法

国家自然科学基金资助项目国家重点研发计划

122720112022YFB3806000

2024

动力学与控制学报
中国力学学会 湖南大学

动力学与控制学报

CSTPCD
影响因子:0.446
ISSN:1672-6553
年,卷(期):2024.22(5)
  • 3