首页|具有初始几何缺陷轴向运动GPLRMF圆锥壳的内共振行为研究

具有初始几何缺陷轴向运动GPLRMF圆锥壳的内共振行为研究

扫码查看
普遍认为,初始几何缺陷对结构非线性动力学行为具有重要影响。然而,初始几何缺陷对轴向运动圆锥壳非线性内共振行为的影响机理尚不清楚。为了回答这一问题,本文研究了具有初始几何缺陷和轴向运动的石墨烯片增强泡沫金属(GPLRMF)圆锥壳的1∶2内共振行为。首先,基于Reddy高阶剪切变形理论和von-Karman几何非线性,导出了圆锥壳的运动控制方程。然后,考虑前两阶振动模态,利用伽辽金原理对运动方程进行离散。随后,采用多尺度法进行求解,通过数值计算得到前两种振动模态下圆锥壳的内共振动力学响应曲线。最后,利用龙格-库塔法研究了在1∶2内共振条件下的运动分岔和混沌动力学行为。
Internal Resonances of Axially Moving GPLRMF Conical Shells with Initial Geometric Imperfection
It is generally believed that initial geometric imperfection has a significant impact on the non-linear dynamic behavior of structures. However,the mechanism that the initial geometric imperfection affects the nonlinear internal resonance behavior of axially moving conical shells is still unclear. To an-swer this question,the 1∶2 internal resonance behavior of graphene platelets reinforced metal foam (GPLRMF) conical shells with initial geometric imperfection and axial motion is studied in this paper. Firstly,based on the Reddy high-order shear deformation theory and von Karman geometric nonlineari-ty,the motion equation of the conical shell is derived. Then,considering the first two vibration modes and discretizing the motion equation through the Galerkin principle. Subsequently,the multi-scale meth-od is used for solving,and the internal resonance dynamic response curves of the conical shell under the first two vibration modes are obtained through numerical calculations. Finally,the motion bifurcation and chaotic dynamic behavior under 1∶2 internal resonance conditions are studied using the Runge-Kutta method.

nonlinear vibrationinternal resonanceconical shellbifurcation and chaosinitial geometric imperfection

丁浩轩、佘桂林

展开 >

重庆大学机械与运载工程学院,重庆 400044

非线性振动 内共振 圆锥壳 分岔与混沌 初始几何缺陷

重庆大学人才引进项目湖南省自然科学基金

020900110441592024JJ7466

2024

动力学与控制学报
中国力学学会 湖南大学

动力学与控制学报

CSTPCD
影响因子:0.446
ISSN:1672-6553
年,卷(期):2024.22(8)