首页|五阶耦合扩展mKdV方程的N阶孤子解

五阶耦合扩展mKdV方程的N阶孤子解

扫码查看
基于二分量五阶耦合扩展修正的Korteweg-de Vries(mKdV)方程,借助广义 Darboux变换和 Taylor展式,得到方程N 阶孤子解的迭代表达式。对谱参数的实部和虚部分类讨论,取合适的自由参数,通过数值模拟展示孤子间的相互作用图,进一步分析不同参数对孤子间弹性及非弹性碰撞的影响。所得结果对高阶孤子的研究具有一定的理论意义。
Nth order Soliton Solutions of the Fifth-order Coupled Extended mKdV Equation
Korteweg-de Vries(mKdV)equation modified by two-component five-order coupled extension is proposed.By means of generalized Darboux transformation and Taylor's expansion,the iterative ex-pression of soliton solution of the order of the equation is obtained.After the real and imaginary sectors of the spectrum parameters are discussed,the free parameters are given to appropriate values.The inter-action graphs between solitons are drawn by numerical simulation,and the effects of different parame-ters on the elastic and inelastic collisions between solitons are further analyzed.The obtained results have a certain theoretical significance for the study of higher-order solitons.

generalized Darboux transformLax pairmKdV equationsoliton solution

刘亚停、文竹妍、魏周超、宋妮

展开 >

中北大学 数学学院,太原 030051

中国地质大学(武汉)数学与物理学院,武汉 430074

广义Darboux变换 Lax对 mKdV方程 孤子解

国家自然科学基金资助项目山西省自然科学基金山西省回国留学人员科研资助项目

123720262022030212110862022-150

2024

动力学与控制学报
中国力学学会 湖南大学

动力学与控制学报

CSTPCD
影响因子:0.446
ISSN:1672-6553
年,卷(期):2024.22(9)