首页|基于粒子群优化的弓网预测控制

基于粒子群优化的弓网预测控制

扫码查看
为了应对受电弓与接触网系统在列车高速运行情况下剧烈振动的问题,提高弓网的受流质量,本文提出了一种基于模型预测控制(Model Predictive Control,MPC)和扰动前馈补偿的复合控制器来降低弓网接触力波动。首先在线性化弓网系统的基础上设计了基于粒子群优化(Particle Swarm Optimization,PSO)的模型预测控制器,实现对弓网接触力的波动优化;其次构造了广义扩张状态观测器(Generalized Extended State Observer,GESO),对于弓网系统中不可测量的状态进行估计,并对模型不确定性问题进行前馈补偿;最后,仿真验证所设计的控制器能够在考虑模型不确定性的条件下有效地降低接触力的波动。
Predictive Control of Pantograph-Catenary Based on Particle Swarm Optimization
In order to deal with the problem of severe vibration of pantograph and catenary system under high-speed train operation and improve the current collection quality of pantograph-catenary,a composite controller based on model predictive control(MPC)and disturbance feedforward compensation is pro-posed to reduce the fluctuation of pantograph-catenary contact force.Firstly,based on the linearized pantograph-catenary system,a model predictive controller based on particle swarm optimization(PSO)is designed to optimize the fluctuation of pantograph-catenary contact force.Secondly,a generalized ex-tended state observer(GESO)is constructed to estimate the unmeasurable state in the pantograph-cate-nary system and compensate the model uncertainty.Finally,the simulation verifies that the designed controller can effectively reduce the fluctuation of the contact force under the condition of considering the model uncertainty.

pantograph active controlmodel predictive controlstate estimationfeedforward compensationparticle swarm optimization

赵伟良、周宁、孙翌、程尧、姜杭艳、张卫华

展开 >

西南交通大学 轨道交通运载系统全国重点实验室,成都 610031

受电弓主动控制 模型预测控制 状态估计 前馈补偿 粒子群优化

国家自然科学基金项目国家重点研发计划项目西南交通大学轨道交通运载系统全国重点实验室自主课题

520723192022YFB4301201-032023TPL-T05

2024

动力学与控制学报
中国力学学会 湖南大学

动力学与控制学报

CSTPCD
影响因子:0.446
ISSN:1672-6553
年,卷(期):2024.22(9)