首页|基于MI-CEEMDAN-RF-LGBM的风功率预测分析

基于MI-CEEMDAN-RF-LGBM的风功率预测分析

扫码查看
针对传统的风功率预测精度无法满足现场实际需求的问题,提出了一种基于互信息(MI)-完全自适应噪声集合经验模态分解(CEEMDAN)-随机森林(RF)-轻量级梯度提升机(LGBM)多种算法融合的风功率预测模型.采用 MI法对风向、风速、温度等一系列风机参数数据进行特征选择,选出与风功率强相关的参数变量;利用 CEEMDAN算法对原始风功率序列进行特征分解,将其分解成多个模态分量;为了防止建模输入过多造成数据的冗余,采用 RF算法进行二次特征选择,对提取出的特征变量进行特征选择,进一步筛选出与风功率原始序列具有较高相关性的特征变量;利用 LGBM 算法、极限学习机(ELM)以及深度信念网络(DBN)分别建立风向预测模型,选择出建模精度更高的风功率预测模型.采用桂林某风电场 53 747 组、每组间隔为 10min的风功率、风向、风速等风机参数数据进行试验,验证了所载模型的有效性.
Wind Power Prediction Analysis Based on MI-CEEMDAN-RF-LGBM
In view of the fact that the traditional wind power prediction accuracy can not meet the actual needs of the field,a wind power prediction model was proposed based on the fusion of mutual information(MI),complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),random forest(RF)and light gradi-ent boosting machine(LGBM).MI was used to select a series of turbine parameters such as wind direction,wind speed and temperature,and select the parameter variable related to strong wind power.The original wind power sequence was decomposed into several modal components by using CEEMDAN.In order to prevent the redun-dancy of the data generated by excessive modeling input,RF was used for secondary feature selection to select the feature variables extracted from the features,and further screen out the feature variables that have a high correla-tion with the original wind power sequence.LGBM,Extreme Learning Machine(ELM)and Deep Belief Network(DBN)were adopted to establish wind direction prediction models,and select the wind power prediction models with higher modeling accuracy.The validity of the model were verified by using 53747 sets of wind power,wind direction and wind speed of a wind farm in Guilin with an interval of 10min.

wind power predictionmutual informationlight gradient boosting rnachine

李洪涛

展开 >

吉林电力股份有限公司浙江分公司,浙江 杭州 310013

风功率预测 互信息 轻量级梯度提升机算法

2024

电力与能源
上海市能源研究所,上海市电力公司,上海市工程热物理学会

电力与能源

影响因子:0.494
ISSN:2095-1256
年,卷(期):2024.45(2)
  • 13