首页|基于GWO-SVM模型的智能电气故障检测与识别

基于GWO-SVM模型的智能电气故障检测与识别

扫码查看
针对常见的分类算法在电气故障诊断中分类准确度不高的问题,提出了一种灰狼优化支持向量机(GWO-SVM)模型来提高电气故障诊断的识别率.首先采集了现实生活中最常见的线性和非线性家用电器白炽灯和微波炉在正常工作和发生电弧故障时的波形信号;其次对其进行了频域特征提取;最后使用灰狼优化算法对支持向量机进行优化,并与未优化SVM和BP神经网络进行了对比.结果表明,GWO-SVM模型的正确率达到了 90%,优于对比算法.
Intelligent Electrical Fault Detection and Recognition Based on GWO-SVM Model
To address the issue of low accuracy in traditional classification algorithms for distinguishing electrical faults,a Grey Wolf Optimization-Support Vector Machine(GWO-SVM)model is proposed to improve electrical fault diagnosis accuracy.Firstly,waveform signals of commonly encountered linear and nonlinear household elec-trical appliances such as incandescent lamps and microwave ovens in normal operation and during arc faults are col-lected from real-life scenarios.Secondly,frequency domain features are extracted from these signals.Finally,the GWO algorithm optimizes the Support Vector Machine,and the performance of GWO-SVM is compared with unoptimized SVM and BP neural networks.The GWO-SVM model achieves an accuracy of 90%.

electrical faultsintelligent detectiongrey wolf optimization algorithmsupport vector machine

贾金伟、方苏、王闻燚、戴军瑛、俞玲、李启本

展开 >

国网上海市电力公司松江供电公司,上海 201600

电气故障 智能检测 灰狼优化算法 支持向量机

2024

电力与能源
上海市能源研究所,上海市电力公司,上海市工程热物理学会

电力与能源

影响因子:0.494
ISSN:2095-1256
年,卷(期):2024.45(4)