首页|基于BP神经网络的电力作业工具损耗状态预测

基于BP神经网络的电力作业工具损耗状态预测

扫码查看
随着配电网作业任务的增多,电力作业工具的损耗率不断升高.基于定期试验和使用前外观检查的传统状态监测方法已无法满足当前工具损耗检测的实际需求,导致存在一定的安全隐患,因此工具损耗状态预测对提升运维检修效率、降低作业风险具有重要意义.提出了基于BP神经网络的电力作业工具损耗状态预测模型,并利用历史数据对模型进行训练,实现了对电力作业工具损耗状态的准确预测,为电力作业工具的运维管理提供了有力的技术支撑.
Prediction of Power Operation Tool Wear State Based on BP Neural Network
With the increasing number of tasks in the distribution network,the wear rate of power operation tools continues to rise.Traditional state monitoring methods based on regular electrical testing and appearance inspec-tions before use are gradually unable to meet the actual demands of current tool wear,leading to certain safety hazards.Therefore,the prediction of tool wear states is of great significance for improving operation and mainte-nance efficiency and reducing operational risks.This study proposes a power operation tool wear state prediction model based on the BP neural network,which utilizes historical data for model training to achieve accurate predic-tions of tool wear states.This provides strong technical support for the operation and maintenance management of power operation tools.

distribution networkBP neural networkpower operation tools

刘明阳、董徐鑫、戴成杰

展开 >

同济大学电子与信息工程学院,上海 201804

国网上海市电力公司嘉定供电公司,上海 201800

配电网 BP神经网络 电力作业工具

2024

电力与能源
上海市能源研究所,上海市电力公司,上海市工程热物理学会

电力与能源

影响因子:0.494
ISSN:2095-1256
年,卷(期):2024.45(6)