首页|考虑气象因素的高速公路服务区电动汽车充电负荷预测

考虑气象因素的高速公路服务区电动汽车充电负荷预测

扫码查看
天气对交通流量的影响显著,而交通流量状态直接影响着电动汽车充电负荷的时空分布,为了探究天气对高速公路服务区电动汽车充电负荷时空分布的影响,提出了一种考虑气象因素的高速公路服务区电动汽车充电负荷预测方法.分析导致电动汽车高速行驶产生里程衰减的因素,建立能耗模型以分析高速行驶状态下电动汽车的能源补给需求;分析天气对交通流量的影响,基于能耗模型,建立电动汽车充电负荷与天气之间的关系;根据地理信息系统建立高速公路路网模型,采用交通起讫点分析法模拟电动汽车的行程轨迹,结合高速公路气象状况对高速公路服务区电动汽车充电负荷进行预测.以某高速公路实际路网为算例,预测各种天气下服务区充电负荷的时空分布,分析天气对各服务区充电负荷的影响规律,验证所提方法的可行性.
Forecasting of electric vehicle charging load in highway service areas considering meteorological factors
Weather has a significant impact on traffic flow,and the state of traffic flow directly affects the spatio-temporal distribution of electric vehicle charging load.In order to explore the impact of weather on the spatio-temporal distribution of electric vehicle charging load in highway service areas,a forecasting method of electric vehicle charging load in highway service areas considering meteorological factors is pro-posed.The factors causing mileage degradation during high-speed driving of electric vehicles are analyzed,and an energy consumption model is established to analyze the energy supply demand of electric vehicles under high-speed driving conditions.The influence of weather on traffic flow is analyzed,and the relationship between the electric vehicle charging load and weather is established based on the energy consumption model.The highway network model is established according to the geographic information system,the travel track of electric vehicles is simulated by using the traffic origin-destination analysis method,and the electric vehicle charging load in highway service areas is forecasted by combining the meteorological conditions along the highway.Taking an actual highway network as the example,the spatio-temporal distribution of the char-ging load in the service areas under various weather conditions is forecasted,and the influence of weather on the charging load in each service area is analyzed to verify the feasibility of the proposed method.

electric vehiclescharging load forecastingclimatic factorsenergy consumption modeltraffic flow

黄一修、肖仕武

展开 >

华北电力大学 新能源电力系统全国重点实验室,北京 102206

电动汽车 充电负荷预测 气象因素 能耗模型 交通流量

2025

电力自动化设备
南京电力自动化研究所有限公司 国电南京自动化股份有限公司

电力自动化设备

北大核心
影响因子:2.101
ISSN:1006-6047
年,卷(期):2025.45(1)