首页|基于特征选择的双边滤波点云去噪算法

基于特征选择的双边滤波点云去噪算法

扫码查看
为了去除与真实点混合在一起的噪声并更好地保留特征,将点云噪声分为3类,将其中与真实点混合在一起的数据点称为第3类噪声点,利用改进的双边滤波算法去除该类噪声点。首先,利用邻域点判断该点属于特征点还是非特征点;然后,根据不同范围的点云来计算特征点和非特征点的双边滤波因子,实现基于特征选择的双边滤波点云去噪。利用该算法对手持三维激光扫描仪获得的盒子及工业构件的激光点云数据进行平滑去噪处理。结果表明,所提算法在去除噪声的同时可以有效保持被扫描物体的特征,避免出现因双边滤波不能兼顾邻域点特征而产生的过度光顺现象。
Bilateral filtering denoise algorithm for point cloud based on feature selection
In order to remove the noise mixed with the real points and retain characteristics, the noise points are divided into three categories, among which the ones mixed with the real points are called as the third category noise points.By using the improved bilateral filtering algorithm, this kind of points can be removed.First, the points are judged to be feature points or non-feature points according to adjacent points.Then, the bilateral filtering factors of the feature points and non-feature points are calculated according to the point cloud in different scale.Finally, bilateral filtering denoise for point cloud based on feature selection is realized.This algorithm is used to remove the noise in the point cloud data of a box and an industrial component obtained by a handheld three-dimensional laser scanner.The results show that this algorithm can effectively remove noise and reserve the char-acteristics of scanned objects.It can also prevent the excessive smoothing phenomenon caused by the reason that bilateral filtering does not take the characteristics of adjacent points into account.

point cloud denoisebilateral filteringfeature selectioncurvature

曹爽、岳建平、马文

展开 >

河海大学地球科学与工程学院,南京210098

南京信息工程大学遥感学院,南京210044

江西省数字国土重点实验室,抚州344000

点云去噪 双边滤波 特征选择 曲率

DLLJ201315

2013

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCDCSCD北大核心EI
影响因子:0.989
ISSN:1001-0505
年,卷(期):2013.(z2)
  • 50
  • 4