首页|基于满足多边界条件基函数的微分求积法及其应用

基于满足多边界条件基函数的微分求积法及其应用

扫码查看
提出了一种由基函数来处理梁边界条件的改进微分求积法(MDQM).在构造挠度函数时,通过多次积分来满足梁的所有边界条件,进而利用此函数计算微分求积法中的加权系数矩阵,解决了通过多项式测试函数计算该系数矩阵时难以在同一个点运用多个边界条件的问题.为了研究该方法在梁的各类分析中的应用,首先构造了2类梁在各种边界条件下对应的挠度基函数,再根据Euler-Bernoulli梁振动理论和稳定性理论,基于微分求积法将计算梁的固有频率问题和临界荷载问题转化为求解矩阵特征值的问题,并将结果与精确解进行比较.此外,还根据理想弹塑性梁的平面弯曲理论,利用该方法计算了梁在各种边界条件下的弹塑性位移,并将结果与其他方法对比.结果表明,所提方法对于梁的稳定性分析、固有频率分析及弹塑性分析都具有较高的计算效率和精度.
Differential quadrature method based on basis function satisfying multiple boundary conditions and its application
A modified differential quadrature method(MDQM)based on the basis functions satisfying multi-ple boundary conditions is proposed.The basis function of deflection is constructed to satisfy all the boundary conditions of beam by integration of multiple times,and then the weighting coefficient matrix in the differential quadrature method can be calculated using the basis function.Thus,the proposed method solves the prob-lem that it is difficult to use multiple boundary conditions at the same point when calculating the weighting co-efficient matrix by polynomial test function.In order to study the application of this method in various beam analyses,the deflection function corresponding to two kinds of beams under various boundary conditions is constructed at first.According to the vibration theory and stability theory of Euler-Bernoulli beam,the prob-lems of calculating the fundamental frequency and critical load of the beam are transformed into problems of solving the matrix eigenvalue based on the DQM,and the results are compared with the exact solution.In ad-dition,based on the plane bending theory of the elastic-plastic beam,the proposed method is applied to calcu-late the elastic-plastic displacement of beam under various boundary conditions,and the results are compared with those in literature.The results show that the proposed method has high computational efficiency and accu-racy for the stability analysis,fundamental frequency analysis and elastoplastic analysis of beams.

differential quadrature method(DQM)Euler-Bernoulli beamfundamental frequencycritical buckling loadelastoplasticity

汤轶群、李振岳

展开 >

东南大学土木工程学院,南京 211189

微分求积法 Euler-Bernoulli梁 固有频率 临界屈曲荷载 弹塑性

国家自然科学基金资助项目江苏省科技厅资助项目

52008094BK20200402

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(1)
  • 15