首页|共享电动自行车路段超速风险影响因素分析

共享电动自行车路段超速风险影响因素分析

扫码查看
为探究电动自行车超速行为影响作用机制,基于共享电动自行车GPS轨迹数据,对超速行为进行精准辨识和风险等级划分.考虑土地利用、道路、交通等风险要素,在构建基于机器学习算法的路段超速风险识别模型基础上,通过部分依赖图解析各因素对路段超速风险的影响规律.结果表明:相较于随机森林,CatBoost对于路段超速风险的识别效果更好;随着土地利用密度、路侧停车密度的降低,公交线路密度、道路等级、人行道宽度、非机动道宽度的增加,超速风险增加;同时,单向路、非物理隔离的人行道与非机动车道、平峰时段存在较大的路段超速风险.该研究为电动自行车风险骑行行为辨识及影响因素分析提供了一种新的方法,并为非机动车交通安全管理提供了有效的技术支持.
Analysis of influencing factors of speeding risk on road segments for shared electric bikes
In order to explore the mechanism of influencing factors of the electric bike(e-bike)speeding be-havior,the global positioning system(GPS)trajectory data of shared e-bikes is used to realize identification and risk classification of speeding behavior.Considering characteristics such as land use,roads,and traffic status,a model that identifies speeding risk on road segments for shared e-bikes is created based on machine learning algorithms.Then,a partial dependency plot is employed to analyze the influence of each influencing factor on speeding risk on road segments.The results show that the CatBoost is better for speeding risk identi-fication on road segments than the random forest model.As land use density and curb parking density decrease and bus line density,road level,sidewalk width,and non-motorized lane width increase,the speeding risk on road segments for shared e-bikes increases.In addition,one-way roads,non-physically separated sidewalks,non-physically separated non-motorized lanes,and non-peak hours are positively associated with speeding risk on road segments.This study provides a novel method for identifying and analyzing risky e-bike behavior and technical support for non-motorized traffic safety management.

electric bikespeeding risk on road segmentstrajectory datamachine learninginfluence factor analysis

张晓龙、边扬、赵晓华、黄建玲、尹璐瑶

展开 >

北京工业大学城市建设学部,北京 100124

北京市智慧交通发展中心,北京 100073

电动自行车 路段超速风险 轨迹数据 机器学习 影响因素分析

国家自然科学基金资助项目

52072012

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(1)
  • 33