首页|基于逆高斯随机过程的混凝土梁桥抗力退化模型

基于逆高斯随机过程的混凝土梁桥抗力退化模型

扫码查看
为准确体现混凝土梁桥抗力退化的时变性与随机性,运用逆高斯(IG)随机过程建立了结构抗力退化模型。基于现场检测数据,采用贝叶斯更新理论对IG随机过程进行实时更新。针对IG随机过程中的参数因先验分布与后验分布非共轭而难以采样估计的问题,提出了混合Gibbs采样法。结合数值案例论证了该方法的可行性,并将其应用于某一混凝土梁桥的抗力预测分析。研究结果表明:IG随机过程可利用现场检测信息对桥梁抗力退化过程实时更新;混合Gibbs采样法可解决IG随机过程的高维参数估计问题,克服了形函数中指数q值的经验性给定缺陷;随着服役年限的增大,桥梁结构的累积退化量逐步增大,当桥梁服役年限为60 a时,其累积退化量为服役年限为30 a时的3。48倍。与Gamma随机过程相比,IG随机过程避免了部分初始参数的假定,可得到更为精确的桥梁抗力退化模型。
Resistance degradation model of concrete beam bridge based on inverse Gaussian stochastic process
To accurately reflect the time-dependence and randomness of the resistance degradation of concrete girder bridges,the inverse Gaussian(IG)stochastic process was used to establish the structural resistance deg-radation model.Based on the field test data,the IG stochastic process was updated in real-time by Bayesian updating theory.In addition,a mixed Gibbs sampling method was proposed to address the difficulty in estima-ting high-dimensional parameters in the model due to the non-conjugate prior and posterior distributions.The feasibility of the method was demonstrated by numerical cases,and the resistance prediction of a concrete gird-er bridge was conducted.The research results show that the IG stochastic process can employ the field detec-tion information to update the bridge resistance degradation process in real time.Moreover,the mixed Gibbs sampling method can solve the problem of high-dimensional parameter estimation,and overcome the defect of empirical given value of exponential q in the shape function.With the increase of service life,the accumulated deterioration of bridge structure gradually increases.When the service life of the bridge is 60 a,the accumula-ted deterioration is 3.48 times that of 30 a.Compared with the Gamma stochastic process,the IG stochastic process avoids the assumption of several initial parameters,and thus an accurate bridge resistance degradation model is obtained.

bridge engineeringresistanceinverse Gaussian(IG)stochastic processmixed Gibbs sampling

徐望喜、钱永久、金聪鹤、龚婉婷

展开 >

西南交通大学土木工程学院,成都 610031

桥梁工程 抗力 逆高斯(IG)随机过程 混合Gibbs采样

国家自然科学基金

51778532

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(2)
  • 24