首页|典型钢桥面铺装体系生命周期碳足迹分析

典型钢桥面铺装体系生命周期碳足迹分析

扫码查看
为了量化钢桥面铺装体系的碳排放量,应用基于过程的生命周期评价方法分析了钢桥面铺装体系的生命周期碳足迹。从材料生产、施工建造、运营管理、维修养护、废弃处置和运输6个过程构建了钢桥面铺装体系碳排放的生命周期清单数据库,采用国际平整度指数建立铺装层行驶质量衰减下的碳排放预估模型,利用SMUO仿真软件进行交通延误仿真获取相关参数以建立交通延误的碳排放模型,建立了相应的碳足迹量化框架和模型,同时对下层EA(环氧)+上层SMA(沥青玛蹄脂)典型铺装体系进行了实例分析。结果表明,维修养护和运营管理阶段贡献了碳排放总量的近80%,交通延误导致的额外碳排放约达到了碳排放总量的24%,固化剂、喷砂除锈等材料或施工工艺也分别贡献了碳排放总量的8。11%和5。42%。
Analysis on the carbon footprint of life cycle for typical steel bridge deck pavement system
To quantify the carbon emissions of steel bridge deck pavement system,a process-based life cycle assessment method was applied to analyze the life cycle carbon footprint of steel bridge deck pavement system.A life cycle inventory database of carbon emissions for steel bridge deck pavement system was constructed through six processes:material production,construction,operation,maintenance,waste disposal and transporta-tion.The international roughness index was used to establish the carbon emission prediction model under the de-cay of traveling quality.SMUO simulation software for traffic delays simulation was used to establish the carbon emission model of traffic delays.A corresponding carbon footprint quantification framework and model was es-tablished,and a case study for typical bridge pavement system of lower EA(epoxy asphalt)+upper SMA(stone mastic asphalt)was implemented.The results show that the maintenance and operation phases contribute nearly 80%of the total carbon emissions,the additional carbon emissions caused by traffic delays amounts to about 24%of the total carbon emissions,while materials or construction processes such as curing agents and sandblasting rust removal contribute 8.11%and 5.42%of the total carbon emissions,respectively.

steel bridge deck pavement systemlife cycle assessment(LCA)carbon footprinttraffic delays

钱振东、汤文杰、刘阳、张煜恒、谢宇欣

展开 >

东南大学智能运输系统研究中心,南京 211189

钢桥面铺装体系 生命周期评价 碳足迹 交通延误

国家自然科学基金面上项目

51878167

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(2)
  • 26