首页|多源数据融合的深埋隧道岩爆预测方法

多源数据融合的深埋隧道岩爆预测方法

扫码查看
为提高隧道设计阶段未开挖区域的岩爆预测准确性,提出了一种多源数据融合的隧道岩爆预测方法.综合隧道勘察和施工阶段的不同地质信息,采用基于证据关联系数的加权融合技术,构建了隧道精细化三维动态地质模型.建立了基于强度理论的岩爆可能性判定方法和基于能量理论的岩爆烈度预测方法,通过Hoek-Brown强度准则判断围岩是否发生岩爆,利用储能极限阈值和能量释放指数划分岩爆烈度,并将其应用于四川某隧道工程中.结果表明,所提方法可以实现隧道掌子面前方30 m范围内的岩爆精准预测,预测结果与隧道开挖实际岩爆的吻合率为95.8%.因此,该预测方法能够在隧道施工前预判岩爆烈度,为隧道岩爆防治提供指导.
Prediction method of rockburst in deep buried tunnel based on multi-source data fusion
To improve the accuracy of rockburst prediction in unexcavated areas during tunnel design,a multi-source data fusion method for tunnel rockburst prediction was proposed.By integrating different geological in-formation from tunnel survey and construction stages,a refined dynamic three-dimensional geological model of the tunnel was established using weighted fusion technology based on evidence correlation coefficients.One method for determining the likelihood of rockburst based on the strength theory and another for predicting the intensity of rockburst based on the energy theory were proposed.The Hoek-Brown strength criterion was used to determine whether rockburst occurred in the surrounding rock,and the energy storage limit threshold and energy release index were applied to classify the rockburst intensity level.The rockburst prediction method was applied to a tunnel in Sichuan.The results show that the proposed method can accurately predict the local rockburst within 30 m in front of the tunnel face.The prediction results and the tunnel excavation of the actual rockburst coincide with the rate of 95.8%.Therefore,this prediction method can predict the intensity of rock-burst before tunnel construction and provide guidance for the prevention and control of rockbursts in tunnels.

tunnelgeological informationmulti-source fusionthree-dimensional geological modeldual control theoryrockburst forecast

张平、任松、吴斐、刘跃、陈星宇

展开 >

重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044

重庆大学资源与安全学院,重庆 400044

广西博宇生态环境有限公司,南宁 530213

隧道 地质信息 多源融合 三维地质模型 双控理论 岩爆预测

国家自然科学基金资助项目重庆市自然科学基金面上资助项目重庆大学煤矿灾害动力学与控制国家重点实验室自主面上资助项目

52074048CSTB2022NSCQ-MSX09142011DA105287-MS202122

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(3)