首页|基于广义投影梯度下降算法的深度学习大规模MIMO信号检测

基于广义投影梯度下降算法的深度学习大规模MIMO信号检测

扫码查看
为了提升大规模MIMO系统的信号检测性能,对由投影和梯度下降(gradient descent,GD)这2个基础操作构成的投影梯度下降(projected gradient descent,PGD)算法进行研究.在基于PGD算法的大规模MIMO检测器中,由于投影和GD操作的损失函数不同,迭代时需要使两者达到平衡,因此通过广义投影梯度下降(generalized projected gradient descent,GPGD)方法实现了投影和GD操作的灵活选取.GPGD方法中在多次的GD步骤后执行1次投影,与传统方式中交替进行投影和GD操作相比,具有显著优势;同时为了保证算法的收敛效率,也对GD操作的步长进行了探究.另外,通过对GPGD算法进行基于深度神经网络的迭代展开,进一步构建了自纠错自动检测器的检测框架,有效提升检测性能和效率.仿真结果表明,GPGD方法带来了明显的系统增益,具有显著的优越性.
Generalizing projected gradient descent algorithm for massive MIMO detection based on deep-learning
The projected gradient descent(PGD)-based detector,which consists of two basic operations,pro-jection and gradient descent(GD),was studied to achieve the performance improvement for massive multiple input multiple output(MIMO)detection.In a PGD-based detector for massive MIMO system,since the pro-jection and GD step have different loss functions,necessary compromise has to be made to balance them dur-ing iterations.For this reason,the generalized PGD(GPGD)method was proposed with flexible choices of projection and GD.Different from traditional way of performing projection and GD alternatively,GPGD im-plements projection after every multiple GD steps offers significant advantages.Meanwhile,the step-size of GD was also investigated for convergence efficiency.After that,by unfolding the proposed GPGD method with deep neural networks,the self-corrected auto-detector was established to achieve better decoding perform-ance and efficiency.The simulation results show that the GPGD method achieves an apparent system gain and has a significant superiority.

massive multiple input multiple output(MIMO)detectionprojected gradient descentdenoising auto-encoderdeep learning

黄永明、王正

展开 >

东南大学移动通信国家重点实验室,南京 211189

东南大学信息科学与工程学院,南京 211189

大规模MIMO检测 投影梯度下降 去噪自动编码器 深度学习

国家自然科学基金资助项目国家自然科学基金资助项目

6222510761720106003

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(4)