首页|基于干扰观测器的复杂非线性系统优化控制方法

基于干扰观测器的复杂非线性系统优化控制方法

Optimal control method for complex nonlinear systems based on disturbance observer

扫码查看
为了提高具有未知干扰的复杂非线性系统的控制性能和运行性能,提出了一种基于干扰观测器的复杂非线性系统优化控制方法(IOCM).该方法设计了 一个基于模糊神经网络的模型逼近器来捕捉系统的非线性动力学,并利用干扰观测器来描述系统的未知干扰,以获得更准确的系统预测模型.然后,在多目标模型预测控制的框架下,提出了一种具有协同成本函数和多梯度算法的优化控制结构,以综合求解设定点和控制律.采用城市污水处理过程基准仿真平台(BSM1)验证所提方法的有效性.实验结果表明:暴雨天气条件下平均出水水质(EQ)为6 711 mg/L、平均运行能耗(EC)为3 805 kW·h;对比其他分步实现的优化控制方法,IOCM具有较好的鲁棒性,能够提高非线性系统的优化控制性能.
To improve the control performance and operational performance of complex nonlinear systems with unknown disturbances,an optimal control method for complex nonlinear systems based on disturbance observer(IOCM)is proposed.In order to obtain a more accurate system prediction model,a model approximator based on fuzzy neural networks is designed to capture the nonlinear dynamics,and a disturbance observer is used to describe the unknown disturbances.Then,within the framework of multi-objective model predictive control,an optimal control structure with collaborative cost function and multi-gradient algorithm is proposed to comprehensively solve set-points and control laws.The effectiveness of the method is verified using bench-mark simulation model 1(BSM1)of municipal wastewater treatment process.Experimental results show that the average effluent quality(EQ)is 6 711 mg/L,and the average operating energy consumption(EC)is 3 805 kW·h under rainstorm weather conditions.Compared with other step-by-step optimal control methods,IOCM has better robustness and can improve the optimization control performance of nonlinear systems.

nonlinear systemmodel approximatordisturbance observeroptimal control method for com-plex nonlinear systems

陈海、郭肖旺、刘琛、封成玉、陈聪

展开 >

中国电子信息产业集团有限公司第六研究所,北京 100083

中电智能科技有限公司,北京 102209

北京工业大学信息学部,北京 100124

非线性系统 模型逼近器 干扰观测器 复杂非线性系统优化控制方法

国家自然科学基金创新研究群体资助项目

62021003

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(4)
  • 7