首页|基于干扰观测器的复杂非线性系统优化控制方法

基于干扰观测器的复杂非线性系统优化控制方法

扫码查看
为了提高具有未知干扰的复杂非线性系统的控制性能和运行性能,提出了一种基于干扰观测器的复杂非线性系统优化控制方法(IOCM).该方法设计了 一个基于模糊神经网络的模型逼近器来捕捉系统的非线性动力学,并利用干扰观测器来描述系统的未知干扰,以获得更准确的系统预测模型.然后,在多目标模型预测控制的框架下,提出了一种具有协同成本函数和多梯度算法的优化控制结构,以综合求解设定点和控制律.采用城市污水处理过程基准仿真平台(BSM1)验证所提方法的有效性.实验结果表明:暴雨天气条件下平均出水水质(EQ)为6 711 mg/L、平均运行能耗(EC)为3 805 kW·h;对比其他分步实现的优化控制方法,IOCM具有较好的鲁棒性,能够提高非线性系统的优化控制性能.
Optimal control method for complex nonlinear systems based on disturbance observer
To improve the control performance and operational performance of complex nonlinear systems with unknown disturbances,an optimal control method for complex nonlinear systems based on disturbance observer(IOCM)is proposed.In order to obtain a more accurate system prediction model,a model approximator based on fuzzy neural networks is designed to capture the nonlinear dynamics,and a disturbance observer is used to describe the unknown disturbances.Then,within the framework of multi-objective model predictive control,an optimal control structure with collaborative cost function and multi-gradient algorithm is proposed to comprehensively solve set-points and control laws.The effectiveness of the method is verified using bench-mark simulation model 1(BSM1)of municipal wastewater treatment process.Experimental results show that the average effluent quality(EQ)is 6 711 mg/L,and the average operating energy consumption(EC)is 3 805 kW·h under rainstorm weather conditions.Compared with other step-by-step optimal control methods,IOCM has better robustness and can improve the optimization control performance of nonlinear systems.

nonlinear systemmodel approximatordisturbance observeroptimal control method for com-plex nonlinear systems

陈海、郭肖旺、刘琛、封成玉、陈聪

展开 >

中国电子信息产业集团有限公司第六研究所,北京 100083

中电智能科技有限公司,北京 102209

北京工业大学信息学部,北京 100124

非线性系统 模型逼近器 干扰观测器 复杂非线性系统优化控制方法

国家自然科学基金创新研究群体资助项目

62021003

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(4)
  • 7