首页|基于YOLOv5-s的机场道面异物目标检测

基于YOLOv5-s的机场道面异物目标检测

扫码查看
为解决目前基于光学图像的机场道面异物(FOD)检测技术存在的环境条件变异性大及小目标检测精度低的问题,提出一种基于YOLOv5-s的道面异物目标检测改进算法.引入暗通道先验技术实现对雾化图像数据的特征复原,采用多尺度特征提取策略、卷积注意力模块(CBAM)、双向特征金字塔结构(BiF-PN)和解耦组合预测结构增强模型对各尺度目标的检测能力.研究结果表明:雾化数据经过去雾复原后,在同一检测算法上的平均精度mAP0.5:0.95增加了 7.62%;在相同测试集的试验条件下,改进算法相比于原始算法有7%的精度提升;在对各尺度目标的测试下,改进算法对分辨率尺寸小于32 ×32像素的小目标检测性能提升最为明显,mAP0.5提高了 38.40%.所提出的改进算法实现了道面异物目标的高精度检测,为FOD实时检测系统的搭建提供了一种新的有效手段.
Foreign object debris detection on airport pavement based on YOLOv5-s
To address the challenges posed by the substantial variability of environmental conditions and the di-minished detection accuracy of small targets within optical image-based foreign object debris(FOD)detection on airport pavement,a novel YOLOv5-s-based algorithm for FOD detection is presented.The dark channel pri-or technique is introduced to realize the feature restoration of foggy image data.Additionally,the multi-scale feature extraction,the convolutional block attention module(CBAM),the bidirectional feature pyramid net-work(BiFPN),and a decoupled combination prediction structure are employed to enhance the detection abili-ty of the model.The results indicate that a notable 7.62%enhancement in mean average precision mAP0.5:0.95 following fogged data restoration via defogging.Furthermore,under identical test set conditions,the im-proved algorithm achieves a 7%precision augmentation relative to its predecessor.Notably,the improved al-gorithm demonstrates proficiency in detecting small targets with resolution sizes less than 32 × 32 pixels,exhib-iting a marked improvement in mAP0.5 by 38.40%.The proposed algorithm realizes the high-precision detec-tion of FOD on the airport pavement and provides a new effective method for the construction of FOD real-time detection system.

airport pavementdebris detectionimage recognitiondeep learningconvolutional neural network

赵晓康、牛振兴、张久鹏、王艺淳、刘奇、程科、邓晋阳

展开 >

长安大学公路学院,西安 710064

民航机场智慧建造与维养重点实验室,西安 710064

东南大学交通学院,南京 211189

西安咸阳国际机场股份有限公司,咸阳 712000

展开 >

机场道面 异物检测 图像识别 深度学习 卷积神经网络

国家重点研发计划资助项目西安咸阳国际机场创新资助项目重大工程材料服役安全研究评价设施国家重大科技基础设施开放课题基金资助项目

2021YFB2600602CWAG-XY-2022-FW-0299MSAF-2023-108

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(5)