首页|基于龙伯格观测器的五相永磁同步电机无差拍模型预测电流控制

基于龙伯格观测器的五相永磁同步电机无差拍模型预测电流控制

扫码查看
为提高五相永磁同步电机(PMSM)抗参数扰动性能,设计了一种基于龙伯格观测器的无差拍模型预测电流控制(DB-MPCC)方法.首先,利用空间矢量调制技术构建DB-MPCC,并分析了定子电阻、电感和永磁体磁链变化对五相PMSM驱动系统电流性能及稳定性的影响;然后,根据电流微分方程提出了一种改进的龙伯格观测器,将参数扰动视为集总变量,并设计简化增益矩阵求解观测器增益;最后,通过实验验证了所提方法的有效性.结果表明:所提方法可以消除因参数变化产生的静态电流误差,同时保证系统稳定性;可以观测定子电阻、定子电感和永磁体磁链幅值参数在50%~200%变化范围内对系统的扰动,并进行有效抑制,降低d1-q1轴电流静态误差,提高控制系统对参数变化的鲁棒性.
Deadbeat model predictive current control of five-phase permanent magnet synchronous motors with Luenberger observer
To improve the anti-disturbance performance of a five-phase permanent magnet synchronous motor(PMSM)drive,a deadbeat-model predictive current control(DB-MPCC)method with Luenberger observer is proposed.First,the DB-MPCC method is constructed using the space vector modulation technique,and the impacts of the variations by stator resistance,inductance and permanent magnet flux-linkage on the phase cur-rent performance and system stability of five-phase PMSM drive are analyzed.Then,an improved Luenberger observer is proposed according to the current differential equations.The disturbances regarding parameter un-certainties are specified as the lumped parameter.Meanwhile,a simplified gain matrix is designed to solve the observer gain.Finally,the effectiveness of the developed scheme is verified by experiments.The results show that the DB-MPCC method can eliminate static current errors caused by parameter deviations as well as ensure the stability of the system,and the proposed method can effectively observe and suppress the disturbances caused by the variations of stator resistance,inductance and permanent magnet flux-linkage within the range from 50%to 200%of the nominal values.Moreover,it can reduce the static error of the d1-q1 axis current and improve the system robustness against parameter uncertainties.

multi-phase motormodel predictive controlparameter deviationsdisturbance observer

倪大成、黄文涛、夏卫国、花为、罗德荣

展开 >

湖南大学电气与信息工程学院,长沙 410082

江南大学物联网工程学院,无锡 214122

东南大学电气工程学院,南京 210096

多相电机 模型预测控制 参数变化 干扰观测器

国家重点研发计划资助项目江苏省重点研发计划资助项目

2021YFB2500700BE2019073

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(5)