首页|基于最优邻域搜索改进模拟退火的多雷达优化布站

基于最优邻域搜索改进模拟退火的多雷达优化布站

扫码查看
针对多雷达组网探测系统,首先建立以空域覆盖率为优化目标、以多雷达位置为优化变量的数学模型,将多雷达布站建模为一个离散优化问题,从而筹划形成最优的多雷达部署方案.其次提出一种基于最优邻域搜索的改进模拟退火算法,通过在历史全局最优解的邻域范围内搜索产生新解来提升算法收敛速度;为确保算法的有效性,利用多项复杂性能测试函数对改进算法进行全面的性能分析.最后,在典型的仿真场景中,设定6部雷达、2个高度层的环境条件,对提出的算法进行验证.仿真结果表明,基于最优邻域搜索的改进模拟退火算法在收敛速度上表现优异,且以此为基础得到的多雷达布站方案能够满足任务需求,确保空域覆盖率的最大化.
Multi-radar deployment based on improved simulated annealing with optimal neighborhood search
A mathematical model with airspace coverage as the optimization objective and multiple radar posi-tions as the optimization variables was first established for the multi-radar network detection system,modeling the deployment process as a discrete optimization problem to obtain the optimal deployment plan.Secondly,an improved simulated annealing algorithm based on optimal neighborhood search was proposed,which im-proved the convergence speed of the algorithm by searching within the neighborhood range of historical global optimal solutions to generate new solutions.To ensure the effectiveness of the algorithm,a comprehensive per-formance analysis of the improved algorithm was conducted using multiple complex performance testing func-tions.Finally,the validation of the proposed method was conducted in a typical scenario of 6 radars and 2 alti-tude layers.Simulation results show that the improved simulated annealing algorithm can effectively accelerate convergence speed,and the multi-radar deployment scheme can meet the task requirements and ensure the maximization of airspace coverage.

multi-radar deploymentoptimal neighborhood searchimproved simulated annealing algorithmmission planningintelligent optimization

刘林、姜龙玉、张伯雷

展开 >

东南大学计算机科学与工程学院,南京 211189

南京电子技术研究所,南京 210039

南京邮电大学计算机学院,南京 210046

多雷达优化布站 最优邻域搜索 改进模拟退火算法 任务规划 智能优化

国家自然科学基金资助项目国家自然科学基金资助项目

6220223861871124

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(5)