首页|基于多源数据的隧道驾驶风险识别

基于多源数据的隧道驾驶风险识别

扫码查看
采用一种基于多源数据的方法来识别隧道复杂环境下的驾驶风险。基于实车驾驶实验,获取多源驾驶数据集,采用滑动时间窗进行隧道入口、内部和出口段的驾驶样本构建,并通过不良驾驶行为谱对样本进行风险评价。利用轻量梯度提升机(LGBM)构建驾驶风险识别模型,并采用部分依赖图(PDP)分析不同路段的风险影响因素。结果表明:隧道内部的驾驶风险较低,而入口段和出口段的风险较高;LGBM在入口段、内部段和出口段测试集上的精确率-召回率曲线下面积分别为0。888、0。893和0。860,驾驶员和道路环境特征能够有效提升驾驶风险识别模型的性能;不同路段的风险影响因素存在差异,相较于路段内部,入口段和出口段受到的多种因素影响更为显著。
Tunnel driving risk identification based on multi-source data
A multi-source data-based method was proposed to identify driving risks in complex tunnel environ-ments.Multi-source driving datasets were obtained based on real-vehicle driving experiments.A sliding time window was used for driving sample construction in the entrance,interior and exit sections of a tunnel.The samples in terms of risk were evaluated by the spectrum of undesirable driving behaviors.A light gradient boosting machine(LGBM)was used to construct a driving risk identification model.The risk influencing fac-tors in different sections were analyzed by the partial dependency diagram(PDP).The results show that the driving risk inside the tunnel is lower,while those in the entrance and exit sections are higher.The areas under the precision-recall curves of LGBM on the test set of the entrance,interior,and exit sections are 0.888,0.893 and 0.860,respectively.The driver and road environment characteristics can effectively improve the performance of the driving risk identification model.The risk influencing factors of different road sections are different.Compared with the inside of the road section,the entrance and exit sections are more significantly affected by a variety of factors.

traffic safetydriving risk identificationmulti-source datamachine learninghighway tunnels

金盛、江杨、刘伯鹍、白聪聪、周梦涛

展开 >

浙江大学建筑工程学院,杭州 310058

浙江大学工程师学院,杭州 310058

中国电力建设集团华东勘测设计研究院有限公司,杭州 311122

交通安全 驾驶风险识别 多源数据 机器学习 公路隧道

2024

东南大学学报(自然科学版)
东南大学

东南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.989
ISSN:1001-0505
年,卷(期):2024.54(6)