首页|一种基于DBI-PD聚类算法的异常检测机制

一种基于DBI-PD聚类算法的异常检测机制

扫码查看
分析了网络数据维数和检测准确度之间的关系,介绍了常用于入侵检测的聚类分析方法及其优缺点。在此基础上,提出一种以戴维森堡丁指数(DBI)为聚类准则、基于划分和密度方法的聚类算法(DBI-PD)。该方法通过信息增益率(IGR)提取网络数据中对检测攻击最有用的“特征”,并以DBI准则确定最优聚类个数、划分和密度两种聚类分析方法结合使用用于异常检测。提出的基于DBI-PD的异常检测机制能有效避免聚类分析在入侵检测中的“维数灾难”问题、避免无用数据特征干扰,还能改善聚类质量,从而提高检测准确度。
An Anomaly Detection Scheme Based on DBI-PD Clustering Algorithm
In this paper, the relationship between the dimensions of network data and the detection accuracy is analyzed. In addition, this paper introduces clustering analysis methods which are often used in intrusion detection and compare their advantages and disadvantages. On the basis of that, this paper proposes a partition and density-based clustering algorithm used Davies-Bouldin Index (DBI-PD). DBI-PD method firstly selects the most related features for detection in network data using information gain ratio (IGR), then determines the optimal number of clusters based on DBI, and finally combines the partition and density clustering methods to detect. The DBI-PD based anomaly detection scheme proposed in this paper can effectively avoid the "dimension disaster" problem in clustering analysis, as well as avoid the interferences because of the useless data features. Furthermore, this scheme can improve the clustering quality, so as to improve the accuracy of detection.

information gain ratio (IGR)Davies-Bouldin Index (DBI)clustering analysisanomaly detection

丁姝郁

展开 >

成都工业学院,成都 611730

信息增益率(IGR) 戴维森保丁指数(DBI) 聚类分析 异常检测

2015

电脑开发与应用
中国北方自动控制技术研究所

电脑开发与应用

影响因子:0.265
ISSN:1003-5850
年,卷(期):2015.(2)
  • 2
  • 8