首页|改进YOLOv5的水稻叶片病害检测算法研究

改进YOLOv5的水稻叶片病害检测算法研究

扫码查看
针对水稻病害的复杂特征、多尺度和低效率问题,使用深度学习构建了DEFFN-YOLOv5水稻叶病害算法,研究了水稻白叶枯病、稻瘟病和褐斑病.为了提高病害检测精度,改进了原始YOLOv5 算法,引入了PixelShuffle上采样模块以还原图像细节.此外,增强了特征提取能力,引入了可变形卷积和轻量的ECA通道注意力模块.通过采用BiFPN来改进PAN模块,增强了信息交互,提高了模型的理解和定位能力.实验证明,改进后的DEFFN-YOLOv5 算法在目标检测中的平均精度(mAP)达到 86%,比原YOLOv5 算法提高了 3%.与此同时,计算需求减少了 4.6GFLOPs,比原YOLOv5 算法减少了 27.85%.这些改进使得DEFFN-YOLOv5 在水稻病害检测中表现更出色.
Enhanced Rice Leaf Disease Detection Algorithm Based on YOLOv5
To address the complexities,multi-scale nature,and efficiency issues related to rice disease detection,we developed the DEFFN-YOLOv5 rice leaf disease algorithm using deep learning.We focused on studying rice diseases,including bacterial leaf blight,rice blast,and brown spot.To enhance disease detection accuracy,we improved the original YOLOv5 algorithm by introducing the PixelShuffle up sampling module to restore image details.Additionally,we enhanced feature extraction capabilities by incorporating deformable convolutions and a light weight ECA channel attention module.We further improved context information capture across different scale sand channels using BiFPN to enhance information interaction within the model,thereby improving object understanding and localization.Experimental results demonstrate that the enhanced DEFFN-YOLOv5 algorithm achieved an average precision(mAP)of 86%in target detection,a 3%improvement over the original YOLOv5 algorithm.Meanwhile,computational requirements were reduced by 4.6 GFLOPs,a 27.85%reduction compared to the original YOLOv5 algorithm.These enhancements make DEFFN-YOLOv5 a superior performer in rice disease detection.

DEFFN-YOLOv5rice leaf disease detectionPixelShuffle

夏宏懿、谭立新

展开 >

湖南农业大学 信息与智能科学技术学院,湖南 长沙 410125

湖南信息职业技术学院 电子工程学院,湖南 长沙 410200

DEFFN-YOLOv5 水稻叶片病害检测 PixelShuffle

湖南省芙蓉人才行动计划:2019年度湖南省芙蓉教学名师项目

湘教通[2019]261号

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(1)
  • 9