首页|基于改进YOLOv5的复杂环境下火灾检测方法

基于改进YOLOv5的复杂环境下火灾检测方法

扫码查看
针对复杂环境中粉尘分布不均造成视频图像失真,检测精度低等问题,提出了一种基于改进YOLOv5 的复杂环境下火灾检测方法.首先,采用改进的暗通道先验去雾算法对采集的火灾图像进行去雾处理,提高复杂环境下火灾视频图像的识别精度;其次,在YOLOv5 网络模型框架中引入CA(Coordinate Attention)注意力机制,提升火焰特征,抑制其他无用特征,提高火灾检测的效率和准确性;最后,为解决YOLOv5对小目标检测效果不好的问题,在YOLOv5 的特征融合部分增加小目标检测层,提升对小目标检测的能力.实验结果表明:改进后的YOLOv5 网络模型精度达到 80.5%,相比于原始YOLOv5 网络模型精度提升 4.2%,同时,改进后的YOLOv5 网络模型对小目标检测精度更高,有效提高了复杂环境下火灾识别准确率.
Fire Detection Method in Complex Environment Based on Improved YOLOv5
Aiming at the problems of video image distortion and low detection accuracy caused by uneven distribution of dust in complex environment,a fire detection method based on improved YOLOv5 in complex environment is proposed.Firstly,the improved dark channel prior dehazing algorithm is used to dehazing the collected fire image to improve the recognition accuracy of fire video image in complex environment.Secondly,the CA(Coordinate Attention)attention mechanism is introduced into the YOLOv5 network model framework to enhance the flame features,suppress other useless features,and improve the efficiency and accuracy of fire detection.Finally,in order to solve the problem that YOLOv5 has a poor detection effect on small targets,a small target detection layer is added to the feature fusion part of YOLOv5 to improve the detection ability of small targets.The experimental results show that the accuracy of the improved YOLOv5 network model reaches 80.5%,which is 4.2%higher than that of the original YOLOv5 network model.At the same time,the improved YOLOv5 network model has higher detection accuracy for small targets and effectively improves the accuracy of fire recognition in complex environments.

complex environmentflame detectiondark channel dehazing algorithmattention mechanismsmall target detection layer

崔志亮、曹苏群

展开 >

淮阴工学院,江苏 淮安 223001

复杂环境 火焰检测 暗通道去雾算法 注意力机制 小目标检测层

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(1)
  • 4